精英家教网 > 高中数学 > 题目详情
设U={x∈Z|0<x≤10},A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},求A∩B,A∪B,∁U(A∪C),(∁UA)∩(∁UB).
考点:交、并、补集的混合运算
专题:集合
分析:用列举法表示全集U,进而结合A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},由集合交集,并集,补集的定义,可得答案.
解答: 解:∵U={x∈Z|0<x≤10}={1,2,3,4,5,6,7,8,9,10},
A={1,2,4,5,9},B={4,6,7,8,10},C={3,5,7},
∴A∩B={4},
A∪B={1,2,4,5,6,7,8,9,10},
CU(A∪C)={6,8,10},
(CUA)∩(CUB)={3}.
点评:本题考查的知识点是集合的交集,并集,补集及其运算,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

△ABC的内角,A,B,C所对的边分别为a,b,c,已知向量
a
=(a,b),向量
b
=(cosA,3cosB)且
a
b

(1)求证:tanB=3tan A;
(2)若tanC=2,求A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为R上的减函数,则满足f(2x)<f(x+1)的实数x的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式
2x-1
x+3
≥1的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2
x2-bx+lnx (a,b
∈R).
(Ⅰ) 若a=b=1,求f(x)点(1,f(1))处的切线方程;
(Ⅱ) 设a≤0,求f(x)的单调区间;
(Ⅲ) 设a<0,且对任意的x>0,f(x)≤f(2),试比较ln(-a)与-2b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ae -x 为偶函数,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
,1),
b
=(0,-1),
c
=(k,
3
),若(
a
-2
b
)∥
c
,则实数k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-x2-4x+5
的定义域为A,函数g(x)=
4-x2
x-1
的定义域为B,求A∩B,A∪B,∁RB.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“?x∈(0,+∞),2x>1”的否定是(  )
A、?x0∉(0,+∞),2x0≤1
B、?x0∈(0,+∞),2x0≤1
C、?x∉(0,+∞),2x≤1
D、?x∈(0,+∞),2x<1

查看答案和解析>>

同步练习册答案