精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数).

1)求函数的值域;

2)若不等式对任意恒成立,求实数的取值范围;

3)证明:

【答案】1;(2;(3)证明见解析.

【解析】

1)先对函数求导,判断出函数单调性,进而可得出值域;

(2)先由题意,将问题转化为对任意恒成立,构造函数,对函数求导,用导数方法判断其单调性,求其最小值,即可得出结果.

3)令,对函数求导,用导数方法研究其单调性,求其最小值,只需最小值大于0即可.

1)因为

所以

,∴

,所以

故函数上单调递减,函数的最大值为

的最小值为

所以函数的值域为

2)原不等式可化为 …(*),

因为恒成立,故(*)式可化为

,则

时,,所以函数上单调递增,故,所以

时,令,得

所以当时,;当时,

所以当,即时,函数成立;

,即时,函数上单调递减,,解得

综上,

3)令,则

,故存在,使得

所以,当时,;当时,

故当时,函数有极小值,且是唯一的极小值,

故函数

因为,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图甲所示的平面五边形中,,现将图甲所示中的沿边折起,使平面平面得如图乙所示的四棱锥.在如图乙所示中


1)求证:平面

2)求二面角的大小;

3)在棱上是否存在点使得与平面所成的角的正弦值为?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在平面直角坐标系xOy中,曲线C的参数方程为t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos.

1)求曲线C和直线l的直角坐标方程;

2)若直线l交曲线CAB两点,交x轴于点P,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中;

已知三个论断:(1)四棱柱是直四棱柱;(2)底面是菱形;(3

以其中两个论断作条件,余下一个为结论,可以得到三个命题,其中有几个是真命题?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】携号转网,也称作号码携带、移机不改号,即无需改变自己的手机号码,就能转换运营商,并享受其提供的各种服务.20191127日,工信部宣布携号转网在全国范围正式启动.某运营商为提质量保客户,从运营系统中选出300名客户,对业务水平和服务水平的评价进行统计,其中业务水平的满意率为,服务水平的满意率为,对业务水平和服务水平都满意的客户有180人.

(Ⅰ)完成下面列联表,并分析是否有的把握认为业务水平与服务水平有关;

对服务水平满意人数

对服务水平不满意人数

合计

对业务水平满意人数

对业务水平不满意人数

合计

(Ⅱ)为进一步提高服务质量,在选出的对服务水平不满意的客户中,抽取2名征求改进意见,用表示对业务水平不满意的人数,求的分布列与期望;

(Ⅲ)若用频率代替概率,假定在业务服务协议终止时,对业务水平和服务水平两项都满意的客户流失率为,只对其中一项不满意的客户流失率为,对两项都不满意的客户流失率为,从该运营系统中任选4名客户,则在业务服务协议终止时至少有2名客户流失的概率为多少?

附:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高一、高二、高三年级的学生人数之比依次为657,防疫站欲对该校学生进行身体健康调查,用分层抽样的方法从该校高中三个年级的学生中抽取容量为n的样本,样本中高三年级的学生有21人,则n等于(

A.35B.45C.54D.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在贯彻精准扶贫政策的过程中,某单位在某市定点帮扶甲、乙两村各户贫困户,工作组对这户村民的年收入、劳动能力、子女受教育等情况等进行调查,并把调查结果转换为贫困指标,再将指标分成五组,得到如下图所示的频率分布直方图.若规定,则认定该户为“绝对贫困户”,否则认定该户为“相对贫困户”,且当时,认定该户为“低收入户”,当时,认定该户为“亟待帮助户”.已知此次调查中甲村的“绝对贫困户”占甲村贫困户的

1)完成下列列联表,并判断是否有的把握认为“绝对贫困户”数与村落有关;

2)某干部决定在这两村贫困指标在内的贫困户中,利用分层抽样抽取户,现从这户中再随机选取户进行帮扶,求所选户中至少有一户是“亟待帮助户”的概率.

甲村

乙村

总计

绝对贫困户

相对贫困户

总计

附:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线不过原点且不平行于坐标轴,有两个交点,线段的中点为

1)若,点在椭圆上,分别为椭圆的两个焦点,求的范围;

2)若过点,射线与椭圆交于点,四边形能否为平行四边形?若能,求此时直线斜率;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱中,侧棱与底面垂直,且分别是的中点,点在线段上,且.

1)求证:不论取何值,总有

2)当时,求平面与平面所成二面角的余弦值.

查看答案和解析>>

同步练习册答案