精英家教网 > 高中数学 > 题目详情

【题目】已知从“神十”飞船带回的某种植物种子每粒成功发芽的概率都为 ,某植物研究所进行该种子的发芽实验,每次实验种一粒种子,每次实验结果相互独立,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.若该研究所共进行四次实验,设ξ表示四次实验结束时实验成功的次数与失败的次数之差的绝对值. (Ⅰ)求随机变量ξ的分布列及ξ的数学期望E(ξ);
(Ⅱ)记“不等式ξx2﹣ξx+1>0的解集是实数集R”为事件A,求事件A发生的概率P(A).

【答案】解:(Ⅰ)四次实验结束时,实验成功的次数可能为0,1,2,3,4, 相应地,实验失败的次数可能为4,3,2,1,0,
所以ξ的可能取值为4,2,0.



所以ξ的分别列为:

ξ

0

2

4

P

期望
(Ⅱ)ξ的可能取值为0,2,4.
当ξ=0时,不等式为1>0对x∈R恒成立,解集为R;
当ξ=2时,不等式为2x2﹣2x+1>0,解集为R;
ξ=4时,不等式为4x2﹣4x+1>0,解集为 ,不为R,
所以
【解析】(Ⅰ)四次实验结束时,实验成功的次数可能为0,1,2,3,4,实验失败的次数可能为4,3,2,1,0,ξ的可能取值为4,2,0.分别求出相应的概率,由此能求出ξ的分布列和期望.(Ⅱ)ξ的可能取值为0,2,4.当ξ=0时,不等式为1>0对x∈R恒成立,解集为R;当ξ=2时,不等式为2x2﹣2x+1>0,解集为R;ξ=4时,不等式为4x2﹣4x+1>0,解集为 ,不为R,由此能求出事件A发生的概率P(A).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,不等式 的解集为[-1,5]
(1)求实数 的值;
(2)若 恒成立,求实数 的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为(
A.80
B.96
C.108
D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为 ,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.
(1)求点Q的轨迹C2的直角坐标方程;
(2)直线l与直线C2交于M,N两点,若|MN|≥2 ,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=a﹣x2 ≤x≤e,e为自然对数的底数)与h(x)=2lnx的图像上存在关于x轴对称的点,则实数a的取值范围是(
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,分别在x轴与直线 上从左向右依次取点Ak、Bk , k=1,2,…,其中A1是坐标原点,使△AkBkAk+1都是等边三角形,则△A10B10A11的边长是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx,g(x)=ax+ ﹣3(a∈R).
(1)当a=2时,解关于x的方程g(ex)=0(其中e为自然对数的底数);
(2)求函数φ(x)=f(x)+g(x)的单调增区间;
(3)当a=1时,记h(x)=f(x)g(x),是否存在整数λ,使得关于x的不等式2λ≥h(x)有解?若存在,请求出λ的最小值;若不存在,请说明理由.(参考数据:ln2≈0.6931,ln3≈1.0986).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax﹣1|﹣(a﹣1)x.
(i) 当a=2时,满足不等式f(x)>0的x的取值范围为
(ii) 若函数f(x)的图象与x轴没有交点,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校计划面向高一年级1200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类,自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.
(Ⅰ)分别计算抽取的样本中男生及女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类学生数;
(Ⅱ)根据抽取的180名学生的调查结果,完成下列列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?

选择自然科学类

选择社会科学类

合计

男生

女生

合计

附: ,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案