精英家教网 > 高中数学 > 题目详情

【题目】南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为垛积术”.现有高阶等差数列,其前7项分别为14814233654,则该数列的第19项为( )(注:

A.1624B.1024C.1198D.1560

【答案】B

【解析】

根据高阶等差数列的定义,求得等差数列的通项公式和前项和,利用累加法求得数列的通项公式,进而求得.

依题意

14814233654,……

两两作差得

:3,4,6,9,13,18,……

两两作差得

12345,……

设该数列为,令,设的前项和为,又令,设的前项和为.

,进而得,所以,则,所以,所以.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)判断函数在区间上零点的个数;

(Ⅱ)设函数在区间上的极值点从小到大分别为.证明:

i

ii)对一切成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019冠状病毒病(CoronaVirus Disease2019COVID-19))是由新型冠状病毒(2019-nCoV)引发的疾病,目前全球感染者以百万计,我国在党中央、国务院、中央军委的坚强领导下,已经率先控制住疫情,但目前疫情防控形势依然严峻,湖北省中小学依然延期开学,所有学生按照停课不停学的要求,居家学习.小李同学在居家学习期间,从网上购买了一套高考数学冲刺模拟试卷,快递员计划在下午400500之间送货到小区门口的快递柜中,小李同学父亲参加防疫志愿服务,按规定,他换班回家的时间在下午430500,则小李父亲收到试卷无需等待的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数,对任意,都有成立,若函数的图象关于直线对称,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的方程为,且直线与以原点为圆心,椭圆短轴长为直径的圆相切.

1)求的值;

2)若椭圆左右顶点分别为,过点作直线与椭圆交于两点,且位于第一象限,在线段上.

①若的面积分别为,问是否存在这样的直线使得?请说明理由;

②直线与直线交于点,连结,记直线的斜率分别为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间与极值.

(2)时,是否存在,使得成立?若存在,求实数的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景点共有999级台阶,寓意长长久久.游客甲上台阶时,可以一步走一个台阶,也可以一步走两个台阶,无其它可能.若甲每步上一个台阶的概率为,每步上两个台阶的概率也为.为了简便描述问题,我们约定,甲从0级台阶开始向上走,一步走一个台阶记1分,一步走两个台阶记2分,记甲登上第个台阶的概率为,其中,且.

1)甲走3步时所得分数为,求的分布列和数学期望;

2)证明:当,且时,数列是等比数列,并求甲登上第100级台阶的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右焦点分别为,椭圆上一点与两焦点构成的三角形的周长为6,离心率为

(Ⅰ)求椭圆的方程;

(Ⅱ)过点的直线交椭圆两点,问在轴上是否存在定点,使得为定值?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某校运动会男生组田径综合赛以选手三项运动的综合积分高低决定排名.具体积分规则如表1所示,某代表队四名男生的模拟成绩如表2

1 田径综合赛项目及积分规则

项目

积分规则

米跑

秒得分为标准,每少秒加分,每多秒扣

跳高

米得分为标准,每多米加分,每少米扣

掷实心球

米得分为标准,每多米加分,每少米扣

2 某队模拟成绩明细

姓名

100米跑(秒)

跳高(米)

掷实心球(米)

根据模拟成绩,该代表队应选派参赛的队员是:(

A.B.C.D.

查看答案和解析>>

同步练习册答案