如图,直角梯形中,,点分别是的中点,点在上,沿将梯形翻折,使平面平面.
(1)当最小时,求证:;
(2)当时,求二面角平面角的余弦值.
(1)参考解析;(2)
【解析】
试题分析:(1)因为当最小时,及连结AC与EF的交点即为G点,通过三角形的相似可得到EG的长度.需要证明直线与直线垂直,根据题意建立空间直角坐标系,即可得到相关各点的坐标,从而写出相关向量,即可判断直线的垂直关系.
(2)由题意所给的体积关系可确定点G的位置,求二面角关键是转化为两平面的法向量的夹角,由于平面BCG的法向量易得,关键是求出平面DGB的法向量.通过待定系数法即可求得,还需判断二面角与法向量夹角的大小关系.解法二用到的推理论证的数学思想很重要.
试题解析:(1)证明:∵点、分别是、的中点,∴EF//BC
又∠ABC=90°∴AE⊥EF,∵平面AEFD⊥平面EBCF,
∴AE⊥平面EBCF,AE⊥EF,AE⊥BE, 又BE⊥EF,
如图建立空间坐标系E﹣xyz.
翻折前,连结AC交EF于点G,此时点G使得AG+GC最小.
EG=BC=2,又∵EA=EB=2.
则A(0,0,2),B(2,0,0),C(2,4,0), D(0,2,2),E(0,0,0),G(0,2,0),
∴=(﹣2,2,2),=(-2,-2,0)
∴=(﹣2,2,2)(-2,-2,0)=0,
∴⊥
(2)解法一:设EG=k,
∥平面,点D到平面EFCB的距离为即为点A到平面EFCB的距离.
[(3- k)+4]×2=7-k
=
又=,
,=,
即EG=1
设平面DBG的法向量为,∵G(0,1,0),
∴(-2,2,2),
则 ,即
取x=1,则y=2,z=-1,∴
面BCG的一个法向量为
则cos<>= 由于所求二面角D-BF-C的平面角为锐角,
所以此二面角平面角的余弦值为
(2)解法二:由解法一得EG=1,过点D作DHEF,垂足H,过点H作BG延长线的垂线垂足O,连接OD.
∵平面AEFD⊥平面EBCF, DH平面EBCF,ODOB,所以就是所求的二面角的平面角.由于HG=1,在OHG中,
又DH=2,在DOH中
所以此二面角平面角的余弦值为
考点:1.图形的翻折问题.2.线面垂直的判定.3.二面角的求法.4.空间坐标系中的运算.5.空间想象能力.
科目:高中数学 来源: 题型:
2 |
查看答案和解析>>
科目:高中数学 来源:2014届天津市高二第一次月考数学试卷(解析版) 题型:解答题
(14分)如图①,直角梯形中,,点分别在上,且,现将梯形A沿折起,使平面与平面垂直(如图②).
(1)求证:平面;
(2)当时,求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2010年浙东北三校高二下学期期中联考数学(理) 题型:解答题
如图,直角梯形中,
椭圆以为焦点且过点,
(1)建立适当的直角坐标系,求椭圆的方程;
(2)若点E满足是否存在斜率的直线与椭圆交于两点,且,若存在,求的取值范围;若不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com