精英家教网 > 高中数学 > 题目详情
5.函数f(x)=x-log${\;}_{\frac{1}{2}}$x的零点个数为(  )
A.0个B.1个C.2个D.无数多个

分析 画出两个函数的图象,判断交点个数,即可得到选项.

解答 解:函数f(x)=x-log${\;}_{\frac{1}{2}}$x的零点个数,就是函数y=x与y=log${\;}_{\frac{1}{2}}$x,两个函数的图象的交点个数,
如图:
可知函数的图象只有一个交点.
函数f(x)=x-log${\;}_{\frac{1}{2}}$x的零点个数为:1个.
故选:B.

点评 本题考查函数的零点个数的判断,考查数形结合思想的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.求函数y=lg(sin2x+2cosx+2)在$x∈[{-\frac{π}{6}\;,\;\;\frac{2π}{3}}]$上的最大值lg4,最小值lg$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若偶函数f(x)在[0,+∞)上单调递减,设a=f(1),b=f(log0.53),c=f(log23-1),则(  )
A.a<b<cB.b<a<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知圆x2+y2+2x-2y+2a=0截直线x+y+2=0所得弦长为4,则实数a的值是(  )
A.-4B.-3C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知幂函数y=xn的图象经过点(2,8),则此幂函数的解析式是(  )
A.y=2xB.y=3xC.y=x3D.y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{a{x}^{3},x>0}\\{cosx,-\frac{π}{2}<x<0}\end{array}\right.$(a∈R),若f(f(-$\frac{π}{3}$))=1,则a的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)=x2-a|x|+a2-3有且只有一个零点,则实数a=(  )
A.$\sqrt{3}$B.-$\sqrt{3}$C.2D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,D在AB上,AD:DB=1:2,E为AC中点,CD、BE相交于点P,连结AP.设$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),则x,y的值分别为(  )
A.$\frac{1}{2},\frac{1}{3}$B.$\frac{1}{3},\frac{2}{3}$C.$\frac{1}{5},\frac{2}{5}$D.$\frac{1}{3},\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow a\;,\;\overrightarrow b$是单位向量,$\overrightarrow a•\overrightarrow b=0$,若$|{\overrightarrow c-\overrightarrow a-\overrightarrow b}|=1$,则$|{\overrightarrow c}|$的最大值为(  )
A.2B.$\sqrt{2}$C.3D.$\sqrt{2}+1$

查看答案和解析>>

同步练习册答案