精英家教网 > 高中数学 > 题目详情

甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是100(5x+1﹣)元.
(1)求证:生产a千克该产品所获得的利润为100a(5+)元;
(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.

(1)见解析(2)甲厂应以6千克/小时的速度生产,可获得最大利润457500元

解析试题分析:1)生产a千克该产品所用的时间是小时,
∵每一小时可获得的利润是100(5x+1﹣)元,∴获得的利润为100(5x+1﹣)×元.
因此生产a千克该产品所获得的利润为100a(5+)元.
(2)生产900千克该产品获得的利润为90000(5+),1≤x≤10.
设f(x)=,1≤x≤10.
则f(x)=,当且仅当x=6取得最大值.
故获得最大利润为=457500元.
考点:函数模型的选择与应用;二次函数在闭区间上的最值
点评:正确理解题意和熟练掌握二次函数的单调性是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成本为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(Ⅰ)已知函数,若存在,使得,则称是函数的一个不动点,设二次函数.
(Ⅰ) 当时,求函数的不动点;
(Ⅱ) 若对于任意实数,函数恒有两个不同的不动点,求实数的取值范围;
(Ⅲ) 在(Ⅱ)的条件下,若函数的图象上两点的横坐标是函数的不动点,且直线是线段的垂直平分线,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位设计的两种密封玻璃窗如图所示:图1是单层玻璃,厚度为8 mm;图2是双层中空玻璃,厚度均为4 mm,中间留有厚度为的空气隔层.根据热传导知识,对于厚度为的均匀介质,两侧的温度差为,单位时间内,在单位面积上通过的热量,其中为热传导系数.假定单位时间内,在单位面积上通过每一层玻璃及空气隔层的热量相等.(注:玻璃的热传导系数为,空气的热传导系数为.)

(1)设室内,室外温度均分别为,内层玻璃外侧温度为,外层玻璃内侧温度为,且.试分别求出单层玻璃和双层中空玻璃单位时间内,在单位面积上通过的热量(结果用表示);
(2)为使双层中空玻璃单位时间内,在单位面积上通过的热量只有单层玻璃的4%,应如何设计的大小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数的导函数的图像与直线平行,且处取得极小值.设
(1)若曲线上的点到点的距离的最小值为,求的值;
(2)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)计算:;(2)解方程:log3(6x-9)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1) 试问函数f(x)能否在x= 时取得极值?说明理由;
(2) 若a= ,当x∈[,4]时,函数f(x)与g(x)的图像有两个公共点,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)

查看答案和解析>>

同步练习册答案