精英家教网 > 高中数学 > 题目详情
已知椭圆C: (a>b>0)的离心率为,且椭圆C上一点与两个焦点F1,F2构成的三角形的周长为2+2.
(1)求椭圆C的方程;
(2)过右焦点F2作直线l 与椭圆C交于A,B两点,设,若,求的取值范围.
(1) ; (2)

试题分析:(1)由题设知   椭圆的标准方程为
(2)因为当直线的斜率不存在时, ,不适合题意,所以直线的斜率存在,设为,直线的方程为,它与椭圆的两交点坐标,则由
通过方程组,借助韦达定理,得到,结合得到的关系式,并且可由得到的取值范围;
另一方面,因为由前述的取值范围可使问题得到解决.
试题解析:
解:(1)由题意知: ,且 ,                    2分
解得 ,                            3分
椭圆的方程为 .                            4分
(2)由题意得直线 的斜率存在,右焦点 ,可设直线 的方程为: 
 得 
由题意 
,则                 6分
                               7分
 
 
                                   9分
 , 在上单调递增,
可得 
 
,解得                           2分
 
=                   13分
 
的取值范围是                         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两个焦点分别为,且点在椭圆C上,又.
(1)求焦点F2的轨迹的方程;
(2)若直线与曲线交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,设曲线C1所围成的封闭图形的面积为,曲线C1上的点到原点O的最短距离为.以曲线C1与坐标轴的交点为顶点的椭圆记为C2
(1)求椭圆C2的标准方程;
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线.Ml上的点(与O不重合).
①若MO=2OA,当点A在椭圆C2上运动时,求点M的轨迹方程;
②若Ml与椭圆C2的交点,求△AMB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C:y2=2px(p>0)的焦点F和椭圆的右焦点重合,直线过点F交抛物线于A、B两点.
(1)求抛物线C的方程;
(2)若直线交y轴于点M,且,m、n是实数,对于直线,m+n是否为定值?
若是,求出m+n的值;否则,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的焦点为,点是椭圆上的一点,轴的交点恰为的中点, .
(1)求椭圆的方程;
(2)若点为椭圆的右顶点,过焦点的直线与椭圆交于不同的两点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆中,以点为中点的弦所在直线斜率为(   )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为(  )
A.B.C.±D.±

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面坐标系xOy中,抛物线的焦点F与椭圆的左焦点重合,点A在抛物线上,且,若P是抛物线准线上一动点,则的最小值为(   )
A.6B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的右焦点作相互垂直的两条弦,若 的最小值为,则椭圆的离心率(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案