精英家教网 > 高中数学 > 题目详情
3.设函数f(x)=sin(2x+$\frac{π}{3}$)+2sinxcosx.
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)若x∈[-$\frac{π}{12}$,$\frac{π}{3}$],求函数f(x)的最大值和最小值.

分析 (Ⅰ)由条件利用三角恒等变换化简函数f(x)的解析式,再利用正弦函数的单调性,求得f(x)的单调递增区间.
(Ⅱ)根据x∈[-$\frac{π}{12}$,$\frac{π}{3}$],利用正弦函数的定义域和值域,求得函数f(x)的最大值和最小值.

解答 解:(Ⅰ)函数f(x)=sin(2x+$\frac{π}{3}$)+2sinxcosx=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x+sin2x
=$\frac{3}{2}$sin2x+$\frac{\sqrt{3}}{2}$cos2x=$\sqrt{3}$sin(2x+$\frac{π}{6}$).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,可得函数f(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈z.
(Ⅱ)由x∈[-$\frac{π}{12}$,$\frac{π}{3}$],得2x+$\frac{π}{6}$∈[0,$\frac{5π}{6}$],得sin(2x+$\frac{π}{6}$)∈[0,1],
所以f(x)的最大值为$\sqrt{3}$,最小值为0.

点评 本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调性、定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.(1-3x+2y)n的展开式中不含y的项的系数和为(  )
A.2nB.-2nC.(-2)nD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,已知a1=2,an+1=$\frac{2{a}_{n}}{{a}_{n+1}}$,求论证{$\frac{1}{{a}_{n}}$-1}是等比数列,并求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在下列四个函数中,在区间(0,$\frac{π}{2}$)上为增函数,且以π为最小正周期的偶函数是(  )
A.y=tanxB.y=|sinx|C.y=sin2xD.y=cos2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数y=lg(mx2+2x+m-1).
(1)若函数的定义域为R,求实数m的取值范围;
(2)若函数的定义域为M,且(0,3)⊆M,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知命题p:“函数f(x)=ax+$\frac{1}{2}$lnx在区间[1,+∞)上单调递减”;命题q:“存在正数x,使得2x(x-a)<1成立”,若p∧q为真命题,则a的取值范围是(  )
A.(-1,-$\frac{1}{2}$]B.(-1,-$\frac{1}{2}$)C.[-1,-$\frac{1}{2}$]D.[-1,-$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\vec a,\vec b$满足|$\vec a$|=2,|$\vec b$=3,|2$\vec a$+$\vec b$|=$\sqrt{37}$,则向量$\vec a$与$\vec b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在等比数列{an}中,a1=1,a6=32,则S6=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合M={a2-a,0}.若a∈M,则实数a的值为(  )
A.0B.2C.2或0D.2或-2

查看答案和解析>>

同步练习册答案