精英家教网 > 高中数学 > 题目详情

【题目】在无穷数列中,,对于任意,都有,设,记使得成立的的最大值为

)设数列,写出的值.

)若为等比数列,且,求的值.

【答案】(1) ;(2) ;(3).

【解析】试题分析:(1)根据使得成立的的最大值,即可求得的值;

(2)确定

,分组求和,即可得到的值;

(3)若为等比数列,现判断,再证明,即可求出所有可能的数列

试题解析:

)∵为等比数列,

∵使得成立的的最大值为

)由题意得

结合条件,得

又∵使得成立的的最大值为,使得成立的的最大值为

,则

假设,即,则当时,

时,

为等差数列,

∴公差

,其中,这与矛盾,

又∵

为等差数列,得,其中

∵使得

,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,直线 的参数方程为 为参数).再以原点为极点,以 正半轴为极轴建立极坐标系,并使得它与直角坐标系 有相同的长度单位.在该极坐标系中圆 的方程为
(1)求圆 的直角坐标方程;
(2)设圆 与直线 交于点 ,若点 的坐标为 ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某一随机变量x的概率分布如下,且 =5.9,则a的值为( )

2 -8

a

9

p

0.5

b-0.1

b


A.5
B.6
C.7
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地早潮叫潮,晚潮叫汐,在通常的情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋。下面是某港口某季节一天的时间与水深的关系表:

时刻(

0:00

3:00

6:00

9:00

12:00

15:00

18:00

21:00

24:00

水深/米(

5

7.6

5.0

2.4

5.0

7.6

5.0

2.4

5.0

(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,并分别求出10:00时和13:00时的水深近似数值。

(2)若某船的吃水深度(船底与水面的距离)为4.5米,安全条例规定至少要有1.8米的安全间隙(船底与洋底的距离),该船何时能进入港口,在港口能呆多久?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥PABCD中,PA平面ABCDAB=4,BC=3,AD=5,∠DAB=∠ABC=90°,ECD的中点.

(1)证明:CD平面PAE

(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥PABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】田忌和齐王赛马是历史上有名的故事,设齐王的三匹马分别为A1,A2,A3;田忌的三匹马分别为B1,B2,B3;三匹马各比赛一次,胜两场者获胜,双方均不知对方的马出场顺序.

(1)若这六匹马比赛优、劣程度可以用不等式表示:A1>B1>A2>B2>A3>B3,则田忌获胜的概率是多大?

(2)若这六匹马比赛优、劣程度可以用不等式表示:A1>B1>A2>B2>B3>A3,则田忌获胜的概率是多大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一片森林原面积为.计划从某年开始,每年砍伐一些树林,且每年砍伐面积的百分比相等.并计划砍伐到原面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的.已知到今年为止,森林剩余面积为原面积的

(1)求每年砍伐面积的百分比;

(2)到今年为止,该森林已砍伐了多少年?

(3)为保护生态环境,今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】猎人在相距100 m处射击一野兔,命中的概率为,若第一次未击中,则猎人进行第二次射击,但距离已是150 m,若又未击中,则猎人进行第三次射击,但距离已是200 m,已知此猎人命中的概率与距离的平方成反比,求射击不超过三次击中野兔的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1 ,(t为参数)曲线C2 +y2=4.
(1)在同一平面直角坐标系中,将曲线C2上的点按坐标变换y′=yx,后得到曲线C′.求曲线C′的普通方程,并写出它的参数方程;
(2)若C1上的点P对应的参数为t= ,Q为C′上的动点,求PQ中点M到直线C3 (t为参数)的距离的最小值.

查看答案和解析>>

同步练习册答案