精英家教网 > 高中数学 > 题目详情
18.设a>0,b>1,若a+b=2,则$\frac{2}{a}+\frac{1}{b-1}$的最小值为(  )
A.$3+2\sqrt{2}$B.6C.$4\sqrt{2}$D.$2\sqrt{2}$

分析 先将a+b=2写成a+(b-1)=1,再用单位“1”替换,最后用基本不等式求最值.

解答 解:∵a+b=2,∴a+(b-1)=1,
则$\frac{2}{a}+\frac{1}{b-1}=({\frac{2}{a}+\frac{1}{b-1}})({a+b-1})$
=$2+\frac{{2({b-1})}}{a}+\frac{a}{b-1}+1≥3+2\sqrt{2}$,
即$\frac{2}{a}+\frac{1}{b-1}$的最小值为3+2$\sqrt{2}$,
当且仅当:a=2-$\sqrt{2}$,b=$\sqrt{2}$时,取“=”,
故选A.

点评 本题主要考查了运用基本不等式最求值,凑出积为定值是应用基本不等式的重要前提,具有一定的计算技巧,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)是定义在R上的偶函数,且当x≥0时,$f(x)={(\frac{1}{2})^x}$.
(1)求f(-1)的值;    
(2)求函数f(x)的值域A;
(3)设$g(x)=\sqrt{-{x^2}+(a-1)x+a}(a>-1)$的定义域为集合B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知约束条件$\left\{{\begin{array}{l}{x+2y≤10}\\{2x+y≥6}\\{y≥0}\end{array}}$.
(1)在如图网格线内建立坐标系,并画出可行域;
(2)求目标函数z=$\frac{2x+y+3}{x+1}$的最值并指出取得最值时的最优解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2x(x∈R),
(1)解不等式f(x)-f(2x)>16-9×2x
(2)若函数q(x)=f(x)-f(2x)-m在[-1,1]上有零点,求m的取值范围;
(3)若函数f(x)=g(x)+h(x),其中g(x)为奇函数,h(x)为偶函数,若不等式2ag(x)+h(2x)≥0对任意x∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.根据如图所示的算法语句,可知输出的结果S是(  )
A.11B.9C.7D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|ax2+2x+1=0},若集合A有且仅有2个子集,则a的取值是(  )
A.1B.-1C.0或1D.-1,0或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在正方体A1B1C1D1-ABCD中,
(1)在正方体的12条棱中,与棱AA1是异面直线的有几条(只要写出结果)
(2)证明:AC∥平面A1BC1
(3)证明:AC⊥平面BDD1B1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知中心在坐标原点的椭圆E的长轴的一个端点是抛物线y2=4$\sqrt{5}$x的焦点,且椭圆E的离心率是$\frac{\sqrt{5}}{5}$
(1)求椭圆E的方程;
(2)过点C(-1,0)的动直线与椭圆E相交于A,B两点.若线段AB的中点的横坐标是-$\frac{1}{2}$,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若x,y满足约束条件$\left\{\begin{array}{l}{x+1≤0}\\{x-y≤0}\\{x+y≤0}\end{array}\right.$,则$\frac{y-1}{x}$的最大值为(  )
A.2B.$\frac{1}{2}$C.3D.1

查看答案和解析>>

同步练习册答案