精英家教网 > 高中数学 > 题目详情

【题目】某电视台举办青年歌手大奖赛,有十名评委打分,已知甲、乙两名选手演唱后的得分如茎叶图如图所示.

(1)从统计学的角度,你认为甲与乙比较,演唱水平怎样?

(2)现场有三名点评嘉宾A,B,C,每位选手可以从中选两位接受其指导,若选手选每位点评嘉宾的可能性相等,求甲、乙两名选手选择的点评嘉宾恰有一人重复的概率.

【答案】(1)甲水平的认可存在较大的差异; (2).

【解析】

(1)先计算得到甲演唱水平更高一点,再看甲乙的方差得到评委对甲水平的认可存在较大的差异.(2)利用古典概型的概率公式求解.

(1)由茎叶图可得,所以甲演唱水平更高一点,但由图分析甲的方差较大,即评委对甲水平的认可存在较大的差异.

(2)依题意,共有9个基本事件,如图所示.

其中,甲、乙两名选手选择的点评嘉宾恰重复一人包含6个基本事件.所以所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3-3mx+n(m>0)的极大值为6,极小值为2.

(1)求实数m,n的值;      

(2)求f(x)在区间[0,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是互不相等的非零实数,求证:由确定的三条抛物线至少有一条与轴有两个不同的交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (﹣3x2+3f′(2))dx,则f′(2)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.

(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T.其

范围为[0,10],分别有五个级别:T[0,2)畅通;T[2,4)基本畅通; T[4,6)轻度拥堵; T[6,8)中度拥堵;T[8,10]严重拥堵晚高峰时段(T2),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的部分直方图如图所示.

(1)请补全直方图,并求出轻度拥堵、中度拥堵、严重拥堵路段各有多少个?

(2)用分层抽样的方法从交通指数在[4,6),[6,8),[8,l0]的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;

(3)(2)中抽出的6个路段中任取2个,求至少一个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟跳绳次数的测试,将数据整理后,画出频率分布直方图如图所示.已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,且第一小组的频数为5.

(1)求第四小组的频率;

(2)求参加这次测试的学生的人数;

(3)若一分钟跳绳次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c.已知asinA=4bsinB,ac= (a2﹣b2﹣c2).(13分)
(Ⅰ)求cosA的值;
(Ⅱ)求sin(2B﹣A)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+3ax2+bx+a2在x=-1处有极值0,则a的值为 ( )

A. 1 B. 2 C. 1或2 D. 3

查看答案和解析>>

同步练习册答案