【题目】已知函数,.
(1)求函数的最小正周期和单调递减区间;
(2)将函数的图象向右平移个单位后,再将所得图象的纵坐标不变,横坐标伸长到原来的2倍,得到的函数的图象关于轴对称,求的最小值.
科目:高中数学 来源: 题型:
【题目】选修4﹣4:坐标系与参数方程
在直角坐标xOy中,圆C1:x2+y2=4,圆C2:(x﹣2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C1 , C2的极坐标方程,并求出圆C1 , C2的交点坐标(用极坐标表示);
(2)求圆C1与C2的公共弦的参数方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某股票在30天内每股的交易价格(元)与时间(天)组成有序数对,点落在如图所示的两条线段上,该股票在30天内的日交易量(万股)与时间(天)的部分数据如表所示:
(1)根据提供的图象,写出该股票每股的交易价格与时间所满足的函数关系式;
(2)根据表中数据确定日交易量与时间的一次函数关系式;
(3)在(1)(2)的结论下,若该股票的日交易额为(万元),写出关于的函数关系式,并求在这30天中第几天的交易额最大,最大是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合Pn={1,2,…,n},n∈N* . 记f(n)为同时满足下列条件的集合A的个数:
①APn;②若x∈A,则2xA;③若x∈ A,则2x A.
(1)求f(4);
(2)求f(n)的解析式(用n表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中不正确的是( )
A. 平面∥平面,一条直线平行于平面,则一定平行于平面
B. 平面∥平面,则内的任意一条直线都平行于平面
C. 一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行
D. 分别在两个平行平面内的两条直线只能是平行直线或异面直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥,底面是边长为的菱形,,侧面为正三角形,侧面底面,为侧棱的中点,为线段的中点
(Ⅰ)求证:平面;
(Ⅱ)求证:;
(Ⅲ)求三棱锥的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(选修4﹣4:坐标系与参数方程):
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,已知射线θ= 与曲线 (t为参数)相交于A,B来两点,则线段AB的中点的直角坐标为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015·陕西)如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com