精英家教网 > 高中数学 > 题目详情

已知函数 (R).
(1) 若,求函数的极值;
(2)是否存在实数使得函数在区间上有两个零点,若存在,求出的取值范围;若不存在,说明理由。

(1)
(2) 

解析试题分析:(1)      2分

 



1


-
0
+
0
-

递减
极小值
递增
极大值
递减
                                                        4分
6分
(2)
,                        8分
① 当时,上为增函数,在上为减函数,,所以在区间上各有一个零点,即在上有两个零点;                   10分
②当时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数 
(Ⅰ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅱ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
若函数处取得极值,试求的值;
在(1)的条件下,当时,恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的导数为,若函数的图像关于直对称,且. (1)求实数的值 ;(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx-.
(1)当时,判断f(x)在定义域上的单调性;
(2)若f(x)在[1,e]上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为大于零的常数。
(1)若函数内调递增,求a的取值范围;
(2)求函数在区间[1,2]上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数时取得极值.
(1)求、b的值;
(2)若对于任意的,都有成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数
①求的单调区间与极值;
②求证:当时,

查看答案和解析>>

同步练习册答案