精英家教网 > 高中数学 > 题目详情
已知一直线与椭圆4x2+9y2=36相交于A、B两点,弦AB的中点坐标为M(1,1),求直线AB的方程.
分析:设出直线方程代入椭圆方程,利用韦达定理及弦AB的中点坐标为M(1,1),求出斜率,即可求得直线AB的方程.
解答:解:设通过点M(1,1)的直线方程为y=k(x-1)+1,代入椭圆方程,
整理得(9k2+4)x2+18k(1-k)x+9(1-k)2-36=0
设A、B的横坐标分别为x1、x2,则
x1+x2
2
=
-18k(1-k)
2(9k2+4)
=1

解之得k=-
4
9

故AB方程为y=-
4
9
(x-1)+1

即所求的方程为4x+9y-13=0.
点评:本题考查直线与椭圆的综合,考查弦中点问题,解题的关键是直线方程代入椭圆方程,利用韦达定理求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C方程为x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),椭圆中心在原点,焦点在x轴上.
(1)证明圆C恒过一定点M,并求此定点M的坐标;
(2)判断直线4x+3y-3=0与圆C的位置关系,并证明你的结论;
(3)当m=2时,圆C与椭圆的左准线相切,且椭圆过(1)中的点M,求此时椭圆方程;在x轴上是否存在两定点A,B,使得对椭圆上任意一点Q(异于长轴端点),直线QA,QB的斜率之积为定值?若存在,求出A,B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线x-y+b=0是抛物线y2=4x的一条切线.
(1)求椭圆的方程;
(2)过点S(0,-
13
)
的动直线L交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰安一模)已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)与抛物线y2=4x有共同的焦点F,且两曲线在第一象限的交点为M,满足|MF|=
5
3

(I)求椭圆的方程;
(II)过点P(0,1)的直线l与椭圆交于A、B两点,满足
PA
PB
=-
5
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的右焦点与抛物线C2y2=4x的焦点F重合,点M是C1与C2在第一象限内的交点,且|MF|=
5
3

(1)求椭圆C1的方程;
(2)设抛物线的准线与x轴交于点E,过E任作一条直线l,l与椭圆C1的两个交点记为A,B.问:在椭圆的长轴上是否存在一点P,使
PA
PB
为定值?若存在,求出点P的坐标及相应的定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

一动圆与两已知圆O1∶x2+y2+4x+3=0,和圆O2∶x2+y2-4x-5=0都内切,则动圆圆心轨迹为


  1. A.
    椭圆
  2. B.
    双曲线一支
  3. C.
    抛物线
  4. D.
    两条相交直线

查看答案和解析>>

同步练习册答案