精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为射线交曲线C于点A,倾斜角为α的直线l过线段OA的中点B且与曲线C交于PQ两点.

(1)求曲线C的直角坐标方程及直线l的参数方程;

(2)当直线l倾斜角α为何值时, |BP|·|BQ|取最小值, 并求出|BP|·|BQ|最小值.

【答案】1)曲线的直角坐标方程为;直线的参数方程为为参数))(2)当,取得最小值为

【解析】

1)由求得曲线的直角坐标方程;先求出曲线与直线的交点的坐标,即可得到的中点,进而求解即可;

2)由(1,将直线的参数方程代入到曲线的直角坐标方程中,由参数的几何意义可得,进而求解即可.

1)由题,因为,,

因为,

所以,,

则曲线的直角坐标方程为,

因为射线交曲线于点,所以点的极坐标为,

则点的直角坐标为,所以的中点,

所以倾斜角为且过点的直线的参数方程为为参数).

2)将直线的参数方程为参数)代入曲线的方程,

整理可得,

对应的参数值分别是,则有,

,

因为,,,取得最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy.直线1的参数方程为t为参数).在以坐标原点为极点,x轴的非负半轴为极轴的极坐标系中.曲线C的极坐标方程为ρ2cosθ.

1)若曲线C关于直线l对称,求a的值;

2)若AB为曲线C上两点.且∠AOB,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三共有1000位学生,为了分析某次的数学考试成绩,采取随机抽样的方法抽取了50位高三学生的成绩进行统计分析,得到如图所示频数分布表:

分组

频数

3

11

18

12

6

(1)根据频数分布表计算成绩在的频率并计算这组数据的平均值(同组的数据用该组区间的中点值代替);

(2)用分层抽样的方法从成绩在的学生中共抽取5人,从这5人中任取2人,求成绩在中各有1人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=exsinxgx)为fx)的导函数,

1)求fx)的单调区间;

2)当x[π],证明:fx+gx)(πx≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).

表中.

1)根据散点图判断,哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立关于的回归方程;

3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人沿固定路线开车上班,沿途共有个红绿灯,他对过去个工作日上班途中的路况进行了统计,得到了如表的数据:

上班路上遇见的红灯数

天数

若一路绿灯,则他从家到达公司只需用时分钟,每遇一个红灯,则会多耗时分钟,以频率作为概率的估计值

1)试估计他平均每天上班需要用时多少分钟?

2)若想以不少于的概率在早上点前(含点)到达公司,他最晚何时要离家去公司?

3)公司规定,员工应早上点(含点)前打卡考勤,否则视为迟到,每迟到一次,会被罚款.因某些客观原因,在接下来的个工作日里,他每天早上只能从家出发去公司,求他因迟到而被罚款的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有位学生申请三所大学的自主招生.若每位学生只能申请其中一所大学,且申请其中任何一所大学是等可能的.

1)求恰有人申请大学的概率;

2)求被申请大学的个数的概率分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左,右焦点,上顶点为为椭圆上任意一点,且的面积最大值为.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)若点.为椭圆上的两个不同的动点,且为坐标原点),则是否存在常数,使得点到直线的距离为定值?若存在,求出常数和这个定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn2n+12,数列{bn}是首项为a1,公差为dd≠0)的等差数列,且b1b3b11成等比数列.

1)求数列{an}{bn}的通项公式;

2)设cn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案