精英家教网 > 高中数学 > 题目详情

【题目】某学校对高三学生一次模拟考试的数学成绩进行分析,随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图.

(1)根据频率分布直方图估计这次考试全校学生数学成绩的众数、中位数和平均值;
(2)若成绩不低于80分为优秀成绩,视频率为概率,从全校学生中有放回的任选3名学生,用变量ξ表示3名学生中获得优秀成绩的人数,求变量ξ的分布列及数学期望E(ξ).

【答案】
(1)解:由频率分布直方图得[70,80)对应的小矩形最高,

∴众数为: =75,

∵[50,70)的频率为(0.012+0.018)×10=0.3,

[70,80)的频率为0.04×10=0.4,

∴中位数为:70+ =75,

平均值为:55×0.12+65×0.18+75×0.40+85×0.22+95×0.08=74.6

所以综合素质成绩的平均值为74.6.


(2)解:由频率分布直方图知优秀率为10×(0.008+0.022)=0.3,

由题意知ξ~B(3,0.3),

故ξ的分布列为

P

0

1

2

3

ξ

0.343

0.441

0.189

0.027

E(ξ)=0×0.343+1×0.441+2×0.189+3×0.027=0.9.


【解析】(1)由频率分布直方图得[70,80)对应的小矩形最高,能出众数,由频率分布直方图的性质能求出中位数和综合素质成绩的平均值.(2)由频率分布直方图知优秀率为0.3,由题意知ξ~B(3,0.3),由此能求出ξ的分布列和E(ξ).
【考点精析】根据题目的已知条件,利用平均数、中位数、众数和离散型随机变量及其分布列的相关知识可以得到问题的答案,需要掌握⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据;在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某单位N名员工参加“社区低碳你我他”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布图如图所示,下表是年龄的频率分布表.

(1)现要从年龄较小的第组中用分层抽样的方法抽取6人,则年龄第组人数分别是多少?

(2)在(1)的条件下,从这6中随机抽取2参加社区宣传交流活动,X表示第3组中抽取的人数,求X的分布列和期望值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】刘徽(约公元 225 —295 年)是魏晋时期伟大的数学家,中国古典数学理论的奠基人之一,他的杰作《九章算术注》和《海岛算经》是中国宝贵的古代数学遗产. 《九章算术·商功》中有这样一段话:斜解立方,得两壍堵. 斜解壍堵,其一为阳马,一为鳖臑.” 刘徽注:此术臑者,背节也,或曰半阳马,其形有似鳖肘,故以名云.” 其实这里所谓的鳖臑(biē nào,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥. 如图,在三棱锥中, 垂直于平面 垂直于,且 ,则三棱锥的外接球的球面面积为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(2,0)及圆C:x2+y2﹣6x+4y+4=0.
(1)设过P直线l1与圆C交于M、N两点,当|MN|=4时,求以MN为直径的圆Q的方程;
(2)设直线ax﹣y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l2垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,且AB=4,BC=CD=ED=EA=2.
(1)求二面角E﹣AB﹣D的正切值;
(2)在线段CE上是否存在一点F,使得平面EDC⊥平面BDF?若存在,求 的值,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查.已知从其他教师中共抽取了10人,则该校共有教师人.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线在点处的切线与曲线也相切.

(1)求实数的值;

(2)设函数,若,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={(x,y)|y=f(x)},若对于任意(x1 , y1)∈M,存在(x2 , y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合:
①M={ };
②M={(x,y)|y=sinx+1};
③M={(x,y)|y=log2x};
④M={(x,y)|y=ex﹣2}.
其中是“垂直对点集”的序号是(
A.①②
B.②③
C.①④
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心C(1,2),且经过点(0,1) (Ⅰ)写出圆C的标准方程;
(Ⅱ)过点P(2,﹣1)作圆C的切线,求切线的方程及切线的长.

查看答案和解析>>

同步练习册答案