精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥的底面是平行四边形,底面.

(1)求证:平面平面

(2)若点分别为上的点,且,在线段上是否存在一点,使得平面;若存在,求出三棱锥的体积;若不存在,请说明理由.

【答案】(1)见解析(2)线段上存在一点,使得平面

【解析】试题分析:(1)先根据勾股定理确定,再由线面垂直性质定理得,由线面垂直判定定理得平面最后根据面面垂直判定定理得平面平面(2)根据三角形相似取,则易得四边形是平行四边形,即得因此平面;利用等体积法进行转换:,再根据锥体体积公式求,代入即得三棱锥的体积

试题解析:(Ⅰ)证明:由已知,得

,∴

底面平面,则

平面平面,且

平面

平面,∴平面平面

(Ⅱ)线段上存在一点,使得平面

证明:在线段上取一点,使,连接

,∴,且

,且

,且

四边形是平行四边形,

平面平面,∴平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数是定义在上的奇函数,且为偶函数,当时,,若函数恰有一个零点,则实数的取值集合是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店计划每天购进某商品若干件,商店每销售1件该商品可获利50元.若供大于求,剩余商品全部退回,则每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利30元.

若商店一天购进该商品10件,求当天的利润y单位:元关于当天需求量n单位:件,n∈N的函数解析式;

商店记录了50天该商品的日需求量单位:件,整理得下表:

日需求量n

8

9

10

11

12

频数

10

10

15

10

5

假设该店在这50天内每天购进10件该商品,求这50天的日利润单位:元的平均数;

若该店一天购进10件该商品,记“当天的利润在区间”为事件A,求PA的估计值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,an+1=2an+1 (I)求证数列{an+1}是等比数列;
(II)设cn=n(an+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生态公园的平面图呈长方形(如图),已知生态公园的长AB=8(km),宽AD=4(km),M,N分别为长方形ABCD边AD,DC的中点,P,Q为长方形ABCD边AB,BC(不含端点)上的一点.现公园管理处拟修建观光车道P﹣Q﹣N﹣M﹣P,要求观光车道围成四边形(如图阴影部分)的面积为15(km2),设BP=x(km),BQ=y(km),
(1)试写出y关于x的函数关系式,并求出x的取值范围;
(2)若B为公园入口,P,Q为观光车站,观光车站P位于线段AB靠近入口B的一侧.经测算,每天由B入口至观光车站P,Q乘坐观光车的游客数量相等,均为1万人,问如何确定观光车站P,Q的位置,使所有游客步行距离之和最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中,从男生中随机抽取了70人,从女生中随机抽取了50人,男生中喜欢数学课程的占,女生中喜欢数学课程的占,得到如下列联表.

喜欢数学课程

不喜欢数学课程

合计

男生

女生

合计

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)请将列联表补充完整;试判断能否有90%的把握认为喜欢数学课程与否与性别有关;

(2)从不喜欢数学课程的学生中采用分层抽样的方法,随机抽取6人,现从6人中随机抽取2人,若所选2名学生中的女生人数为,求的分布列及数学期望.

附:,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数的单调区间和极值;

(2)是否存在实数,使得函数上的最小值为1?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)= x2+ax﹣lnx(a∈R)
(1)当a=1时,求函数f(x)的极值;
求实数m的取值范围.
(2)当a≥2时,讨论函数f(x)的单调性;
(3)若对任意a∈(2,3)及任意x1 , x2∈[1,2],恒有ma+ln2>|f(x1)﹣f(x2)|成立,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+(a﹣2)x﹣2,a∈R.
(1)若关于x的不等式f(x)≤0的解集为[﹣1,2],求实数a的值;
(2)当a<0时,解关于x的不等式f(x)≤0.

查看答案和解析>>

同步练习册答案