精英家教网 > 高中数学 > 题目详情
4.各项均为正数的等比数列{an}中,若a2=1,a4=$\frac{1}{4}$,则其前n项和Sn=4$(1-\frac{1}{{2}^{n}})$.

分析 利用等比数列的通项公式与前n项和公式即可得出.

解答 解:设等比数列{an}的公比为q>0,
∵a2=1,a4=$\frac{1}{4}$,
∴a1q=1,${a}_{1}{q}^{3}$=$\frac{1}{4}$,解得q=$\frac{1}{2}$,a1=2.
∴其前n项和Sn=$\frac{2(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=4$(1-\frac{1}{{2}^{n}})$.
故答案为:4$(1-\frac{1}{{2}^{n}})$.

点评 本题考查了等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.函数y=2cos2x-1的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.一个球的体积是100cm3,试计算它的表面积(π取3.14,结果精确到1cm3,可用计算器).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.f(x)是定义在(0,+∞)上的单调增函数,且对任意x,y∈(0,+∞)恒有f(xy)=f(x)+f(y)成立,
(1)求f(1)的值;
(2)证明:当x>0时,f($\frac{1}{x}$)=-f(x);
(3)判定函数g(t)=t+$\frac{4}{t+2}$.当t≥1时的单调性(写出论证过程),并求对一切实数t≥1,恒有f(t+$\frac{4}{t+2}$)≥f(m)成立的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若角α的终边落在直线x+y=0上,求在[-360°,360°]内的所有满足条件的角α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列结论:
①在区间(0,+∞)上,函数y=x-1,$y={x^{\frac{1}{2}}}$,y=(x-1)2,y=x3中有三个是增函数;
②若logm3<logn3<0,则0<n<m<1;
③若函数f(x)是奇函数,则f(x-1)的图象关于点A(1,0)对称;
④已知函数$f(x)=\left\{\begin{array}{l}{3^{x-2}},x≤2\\{log_3}(x-1),x>2\end{array}\right.$则方程 $f(x)=\frac{1}{2}$有两个不相等的实数根,
其中正确结论的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{2x+a}{x+1}$在区间(0,1)单调增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x、y为锐角,$tanx=\frac{4}{7}$,$siny=\frac{{\sqrt{10}}}{10}$,求tan(x+2y)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在四面体ABCD中,已知$\overrightarrow{AB}$=$\overrightarrow b$,$\overrightarrow{AD}$=$\overrightarrow a$,$\overrightarrow{AC}$=$\overrightarrow c$,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{EC}$,则$\overrightarrow{DE}$等于$\frac{1}{3}\overrightarrow{c}$-$\overrightarrow{a}$+$\frac{2}{3}\overrightarrow{b}$

查看答案和解析>>

同步练习册答案