精英家教网 > 高中数学 > 题目详情

【题目】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体外接球的表面积是( )

A. B. C. D.

【答案】A

【解析】由三视图画出如图所示的直观图:

该几何体是直三棱柱,其中,四边形是正方形,则将该直三棱柱补全成长方体,如图所示:

∴该长方体的体对角线为,则外接球的半径为

∴该几何体外接球的表面积是

故选A.

点睛:空间几何体与球接、切问题的求解方法

(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解

(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素补形成为一个球内接长方体,利用求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数中,表示同一函数的一组是(

A.

B.

C.

D..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD-A1B1C1D1中,CDAB, ABBC,AB=BC=2CD=2,侧棱AA1⊥平面ABCD.且点MAB1的中点

(1)证明:CM∥平面ADD1A1

(2)求点M到平面ADD1A1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是梯形,且,,,,.

(1)求证:平面 平面;

(2),求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为分别为的右顶点和上顶点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)若分别是轴负半轴,轴负半轴上的点,且四边形的面积为2,设直线的交点为,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年11月、12月全国大范围流感爆发,为研究昼夜温差大小与患感冒人数多少之间的关系,一兴趣小组抄录了某医院11月到12月间的连续6个星期的昼夜温差情况与因患感冒而就诊的人数得到如下资料:

日期

第一周

第二周

第三周

第四周

第五周

第六周

昼夜温差x(°C)

10

11

13

12

8

6

就诊人数y(个)

22

25

29

26

16

12

该兴趣小组确定的研究方案是先从这六组数据中选取2组用剩下的4组数据求线性回归方程再用被选取的2组数据进行检验

(Ⅰ)求选取的2组数据恰好是相邻两个星期的概率;

(Ⅱ)若选取的是第一周与第六周的两组数据请根据第二周到第五周的4组数据,求出关于的线性回归方程

(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?

(参考公式: )

参考数据: 1092, 498

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,离心率为,其右焦点为,过点作直线交椭圆于另一点.

(Ⅰ)若,求的面积;

(Ⅱ)若过点的直线与椭圆相交于两点,设上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)求函数的解析式及其定义域;

2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同。若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度与时间t满足关系式:,若使用口服方式给药,则药物在白鼠血液内的浓度与时间t满足关系式:现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰。

1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?

2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围。

查看答案和解析>>

同步练习册答案