精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,求的零点个数;

2)若,证明:.

【答案】(1)(2)见解析

【解析】

1)将a的值代入f(x),再求导得,在定义域内讨论函数单调性,再由函数的最小值正负来判断它的零点个数;(2)把a的值代入f(x),将整理化简为,即证明该不等式在上恒成立,构造新的函数,利用导数可知其在定义域上的最小值,构造函数,由导数可知其定义域上的最大值,二者比较大小,即得证。

1)解:因为,所以.

,得;令,得

所以上单调递增,在上单调递减,

所以的零点个数为1.

2)证明:因为,从而.

又因为

所以要证恒成立,

即证恒成立,

即证恒成立.

,则

时,单调递增;

时,单调递减.

所以.

,则

时,单调递增;

时,单调递减.

所以,所以

所以恒成立,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若函数,当,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数图象上不同两点处的切线的斜率分别是,规定叫曲线在点与点之间的“弯曲度”,给出以下命题:

1)函数图象上两点的横坐标分别为12,则

2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;

3)设点是抛物线,上不同的两点,则

4)设曲线上不同两点,且,若恒成立,则实数的取值范围是

以上正确命题的序号为__(写出所有正确的)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,不等式的解集有且只有一个元素,设数列的前项和.

1)求数列的通项公式;

2)若数列满足,求数列的前项和.

3)设各项均不为0的数列中,满足的正整数的个数称为这个数列的变号数,令,求数列的变号数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若执行下面的程序框图,输出的值为3,则判断框中应填入的条件是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,点是圆上一动点,动点满足,点在直线上,且.

1)求点的轨迹的标准方程;

2)已知点在直线上,过点作曲线的两条切线,切点分别为,记点到直线的距离分别为,求的最大值,并求出此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定合格”“不合格两个等级,同时对相应等级进行量化:合格5分,不合格0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:

等级

不合格

合格

得分

频数

6

24

1)由该题中频率分布直方图求测试成绩的平均数和中位数;

2)其他条件不变,在评定等级为合格的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;

3)用分层抽样的方法,从评定等级为合格不合格的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,已知.是线段的中点.

1)求直线与平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

同步练习册答案