【题目】已知函数.
(1)若,求的零点个数;
(2)若,,证明:,.
【答案】(1)(2)见解析
【解析】
(1)将a的值代入f(x),再求导得,在定义域内讨论函数单调性,再由函数的最小值正负来判断它的零点个数;(2)把a的值代入f(x),将整理化简为,即证明该不等式在上恒成立,构造新的函数,利用导数可知其在定义域上的最小值,构造函数,由导数可知其定义域上的最大值,二者比较大小,即得证。
(1)解:因为,所以.
令,得或;令,得,
所以在,上单调递增,在上单调递减,
而,,,
所以的零点个数为1.
(2)证明:因为,从而.
又因为,
所以要证,恒成立,
即证,恒成立,
即证,恒成立.
设,则,
当时,,单调递增;
当时,,单调递减.
所以.
设,则,
当时,,单调递增;
当时,,单调递减.
所以,所以,
所以,恒成立,
即,.
科目:高中数学 来源: 题型:
【题目】设,分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆于点,且的周长为.
(1)求椭圆的方程;
(2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数图象上不同两点,,,处的切线的斜率分别是,,规定叫曲线在点与点之间的“弯曲度”,给出以下命题:
(1)函数图象上两点、的横坐标分别为1,2,则;
(2)存在这样的函数,图象上任意两点之间的“弯曲度”为常数;
(3)设点、是抛物线,上不同的两点,则;
(4)设曲线上不同两点,,,,且,若恒成立,则实数的取值范围是;
以上正确命题的序号为__(写出所有正确的)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数,不等式的解集有且只有一个元素,设数列的前项和.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.
(3)设各项均不为0的数列中,满足的正整数的个数称为这个数列的变号数,令,求数列的变号数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,点是圆上一动点,动点满足,点在直线上,且.
(1)求点的轨迹的标准方程;
(2)已知点在直线上,过点作曲线的两条切线,切点分别为,记点到直线的距离分别为,求的最大值,并求出此时点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解校园安全教育系列活动的成效,对全校学生进行了一次安全意识测试,根据测试成绩评定“合格”“不合格”两个等级,同时对相应等级进行量化:“合格”记5分,“不合格”记0分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如下:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(1)由该题中频率分布直方图求测试成绩的平均数和中位数;
(2)其他条件不变,在评定等级为“合格”的学生中依次抽取2人进行座谈,每次抽取1人,求在第1次抽取的测试得分低于80分的前提下,第2次抽取的测试得分仍低于80分的概率;
(3)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈.现再从这10人中任选4人,记所选4人的量化总分为,求的数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com