【题目】| |=1,| |= , =0,点C在∠AOB内,且∠AOC=30°,设 =m +n (m、n∈R),则 等于( )
A.
B.3
C.
D.
科目:高中数学 来源: 题型:
【题目】已知三棱锥A﹣BCD的各个棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是( )
A.90°
B.60°
C.45°
D.30°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的方程为: ,过点的一条直线与抛物线交于两点,若抛物线在两点的切线交于点.
(1)求点的轨迹方程;
(2)设直线的斜率存在,取为,取直线的斜率为,请验证是否为定值?若是,计算出该值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆x2+4y2=4,直线l:y=x+m
(1)若l与椭圆有一个公共点,求m的值;
(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三年级有学生500人,其中男生300人,女生200人。为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组: 分别加以统计,得到如图所示的频率分布直方图。
(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;
(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A、B、C所对边的长分别为a、b、c,则下列命题:
①若ab>c2 , 则C ;
②若a+b>2c,则C ;
③若a3+b3=c3 , 则C ;
④若(a+b)c<2ab,则ab>c2;
⑤若(a2+b2)c2<2a2b2 , 则C .
其中正确命题是(写出所有正确命题的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}与{bn},若a1=3且对任意正整数n满足an+1﹣an=2,数列{bn}的前n项和Sn=n2+an .
(1)求数列{an},{bn}的通项公式;
(2)求数列{ }的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, , ,且的最小值为.
(1)求的值;
(2)若不等式对任意恒成立,其中是自然对数的底数,求的取值范围;
(3)设曲线与曲线交于点,且两曲线在点处的切线分别为, .试判断, 与轴是否能围成等腰三角形?若能,确定所围成的等腰三角形的个数;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】证明与化简.
(1)求证:cotα=tanα+2cot2α;
(2)请利用(1)的结论证明:cotα=tanα+2tan2α+4cot4α;
(3)请你把(2)的结论推到更一般的情形,使之成为推广后的特例,并加以证明:
(4)化简:tan5°+2tan10°+4tan20°+8tan50°.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com