【题目】已知椭圆的两个焦点,,离心率为,的周长等于,点、在椭圆上,且在边上.
(1)求椭圆的标准方程;
(2)如图,过圆上任意一点作椭圆的两条切线和与圆交与点、,求面积的最大值.
科目:高中数学 来源: 题型:
【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近10年投入的年研发费用与年销售量的数据,得到散点图如图所示.
(1)利用散点图判断和(其中均为大于0的常数)哪一个更适合作为年销售量和年研发费用的回归方程类型(只要给出判断即可,不必说明理由);
(2)对数据作出如下处理,令,得到相关统计量的值如表:根据第(1)问的判断结果及表中数据,求关于的回归方程;
15 | 15 | 28.25 | 56.5 |
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点,,动点与两点连线的斜率满足.
(1)求动点的轨迹的方程;
(2)是曲线与轴正半轴的交点,曲线上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,以O为圆心的圆与直线相切.
(1)求圆O的方程.
(2)直线与圆O交于A,B两点,在圆O上是否存在一点M,使得四边形为菱形?若存在,求出此时直线l的斜率;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为等腰直角三角形,,将沿底边上的高线折起到位置,使,如图所示,分别取的中点.
(1)求二面角的余弦值;
(2)判断在线段上是否存在一点,使平面?若存在,求出点的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的右焦点,过点且与坐标轴不垂直的直线与椭圆交于,两点,当直线经过椭圆的一个顶点时其倾斜角恰好为.
(1)求椭圆的方程;
(2)设为坐标原点,线段上是否存在点,使得?若存在,求出实数的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面ABCD,,AB∥DC,,,点E为棱PC中点。
(1)证明:平面PAD;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足,求二面角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com