精英家教网 > 高中数学 > 题目详情

(重庆卷文20)如图(20)图, 为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二

面角的大小为,求:

(Ⅰ)点B到平面的距离;

(Ⅱ)异面直线lAB所成的角(用反三角函数表示).

【解析】本题主要考查立体几何中的主干知识,如线线角、二面角等基础知识,考查空间想象能力、逻辑思维能力和运算能力。解题的关键是线面平行、三垂线定理等基础知识,本题属中等题。

【答案】(1)如答(20)图,过点B作直线B′C∥A′A且使B′C=A′A.过点BBDCB′,交CB′的延长线于D.

由已知AA′⊥l,可得DB′⊥l,又已知BB′⊥l,故l⊥平面BB′D,得BDl又因BDCB′,从而BD⊥平面α,BD之长即为点B到平面α的距离.

B′ClBBl,故∠BB′C为二面角α-l-β的平面角.由题意,∠BB′C=.因此在Rt△BB′D中,BB′=2,∠BB′D=π-∠BB′C=,BD=BB′·sinBB′D=.

(Ⅱ)连接AC、BC.因B′C∥A′AB′C=A′A,AAl,知A′ACB为矩形,故ACl.所以∠BAC或其补角为异面直线lAB所成的角.

在△BB′C中,B′B=2,B′C=3,∠BB′C=,则由余弦定理,

BC=.

BD平面,且DCCA,由三垂线定理知ACBC.

故在△ABC中,BCA=sinBAC=.

因此,异面直线l与AB所成的角为arcsin

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(重庆卷文20)如图(20)图, 为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二

面角的大小为,求:

(Ⅰ)点B到平面的距离;

(Ⅱ)异面直线lAB所成的角(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年重庆卷文)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分.)

       如图(20)图, 为平面,AB=5,A,B在棱l上的射影分别为A′,B′,AA′=3,BB′=2.若二面角的大小为,求:

     (Ⅰ)点B到平面的距离;

(Ⅱ)异面直线lAB所成的角(用反三角函数表示).

查看答案和解析>>

同步练习册答案