(本小题满分12分)点为椭圆
内的一定点,过P点引一直线,与椭圆相交于
两点,且P恰好为弦AB的中点,如图所示,求弦AB所在的直线方程及弦AB的长度。
。
解析试题分析:由于A,B两点是直线与椭圆的交点,故他们应满足椭圆方程,设出它们的坐标,然后根据它们的中点为M,可将坐标间的关系转化为求直线l的斜率,然后再由点斜式求出直线方程.利用两点距离公式得到弦的长度的求解。
解:设直线与椭圆交于,则
…①且
…②
②-①得,即
,
∴所求直线方程为:,即
。
将其代入椭圆方程整理得,,根据弦长公式有
。
考点:本题主要考查直线与椭圆的位置关系的运用。
点评:解决该试题的关键是求直线方程时,应先选择适当的直线方程的形式,并注意各种形式的适用条件,用斜截式及点斜式时,直线的斜率必须存在,而两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直或经过原点的直线,故在解题时,若采用截距式,应注意分类讨论,判断截距是否为零;若采用点斜式,应先考虑斜率不存在的情况.
科目:高中数学 来源: 题型:解答题
已知抛物线过点
.
(I)求抛物线的方程;
(II)已知圆心在轴上的圆
过点
,且圆
在点
的切线恰是抛物线在点
的切线,求圆
的方程;
(Ⅲ)如图,点为
轴上一点,点
是点
关于原点的对称点,过点
作一条直线与抛物线交于
两点,若
,证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
分别是椭圆
:
+
=1(
)的左、右焦点,
是椭圆
的上顶点,
是直线
与椭圆
的另一个交点,
=60°.
(1)求椭圆的离心率;
(2)已知△的面积为40
,求a, b 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)已知抛物线:
过点
.(1)求抛物线
的方程,并求其准线方程;
(2)是否存在平行于(
为坐标原点)的直线
,使得直线
与抛物线
有公共点,且直线
与
的
距离等于?若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
点P是圆上的一个动点,过点P作PD垂直于
轴,垂足为D,Q为线段PD的中点。
(1)求点Q的轨迹方程。
(2)已知点M(1,1)为上述所求方程的图形内一点,过点M作弦AB,若点M恰为弦AB的中点,求直线AB的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)如图,椭圆:
的左焦点为
,右焦点为
,离心率
.过
的直线交椭圆于
两点,且△
的周长为
.
(Ⅰ)求椭圆的方程.
(Ⅱ)设动直线:
与椭圆
有且只有一个公共点
,且与直线
相交于点
.试探究:在坐标平面内是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com