精英家教网 > 高中数学 > 题目详情

【题目】已知函数 (其中为自然对数的底数, )

(1) 设函数,讨论函数的零点个数;

(2) 时,不等式恒成立,求的取值范围.

【答案】1 时,零点个数为0 时,零点个数为1;当时,零点个数为2;(2

【解析】试题分析: 要求的零点个数,转化为 的解的个数,然后分类讨论(2)依据原函数的单调性转化为,然后分类讨论

解析:(1)由

*),问题等价于方程(*)解的个数,

方程(*)的判别式,因此:

时,方程(*)无解,函数的零点个数为0

时,方程(*)有两个相等实数根,函数的零点个数为1

时,方程(*)有两个不相等实数根,函数的零点个数为2

2)由是单调递增函数,

所以可化为时恒成立.

分情况讨论:

(1) 时, 时取得最小值,由

(2) 时, 时取得最小值,由

无解

综上所述: 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的定义域和值域;

(2)设为实数),求时的最大值

(3)对(2)中,若所有的实数恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:x0∈R,x02﹣2x0+3≤0的否定是x∈R,x2﹣2x+3>0,命题q:双曲线 ﹣y2=1的离心率为2,则下列命题中为真命题的是(
A.p∨q
B.¬p∧q
C.¬p∨q
D.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系内,已知是圆上一点,折叠该圆两次使点分别与圆上不相同的两点(异于点)重合,两次的折痕方程分别为,若圆上存在点,使,其中的坐标分别为,则实数的取值集合为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点 且圆心在直线.

(1)求圆的方程;

(2)过点的直线与圆交于两点,问在直线上是否存在定点使得恒成立?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域分别是AB的函数 ,规定:

现给定函数

(1) ,写出函数的解析式;

(2) 时,求问题(1)中函数的值域;

(3) 请设计一个函数,使得函数为偶函数且不是常数函数,并予以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= ,f(x)=g(x)﹣ax.
(1)求函数g(x)的单调区间;
(2)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分“优秀、合格、尚待改进”三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下: 表1:男生表2:女生

等级

优秀

合格

尚待改进

等级

优秀

合格

尚待改进

频数

15

x

5

频数

15

3

y


(1)从表二的非优秀学生中随机选取2人交谈,求所选2人中恰有1人测评等级为合格的概率;
(2)由表中统计数据填写下边2×2列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

男生

女生

总计

优秀

非优秀

总计

参考数据与公式:
K2= ,其中n=a+b+c+d.
临界值表:

P(K2>k0

0.05

0.05

0.01

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

查看答案和解析>>

同步练习册答案