精英家教网 > 高中数学 > 题目详情

【题目】如图,已知三棱锥P﹣ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.

(Ⅰ)求证:PC⊥BC.
(Ⅱ)求二面角M﹣AC﹣B的大小.

【答案】证明:(Ⅰ)由PA⊥平面ABC,∴PA⊥BC, 又因为∠ACB=90°,即BC⊥AC.
∴BC⊥面PAC,∴PC⊥BC.
(Ⅱ)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,因为M是PB的中点,所以MO∥PA,
又因为PA⊥面ABC,∴MO⊥面ABC.∴∠MHO为二面角M﹣AC﹣B的平面角.
设AC=2,则BC=2 ,MO=1,OH=
在Rt△MHO中,tan∠MHO=
二面角M﹣AC﹣B的大小为300

【解析】(Ⅰ)通过证明PA⊥BC,BC⊥AC.得到BC⊥面PAC即可(Ⅱ)取AB中点O,连结MO、过O作HO⊥AC于H,连结MH,因为M是PB的中点,∠MHO为二面角M﹣AC﹣B的平面角.在Rt△MHO中,球tan∠MHO即可.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列四种说法
①在△ABC中,若∠A>∠B,则sinA>sinB;
②等差数列{an}中,a1 , a3 , a4成等比数列,则公比为
③已知a>0,b>0,a+b=1,则+的最小值为5+2
④在△ABC中,已知== , 则∠A=60°.
正确的序号有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂拟生产甲、乙两种适销产品,每件销售收入分别为3000元,2000元.甲、乙产品都需要在A、B两种设备上加工,在每台A、B设备上加工一件甲所需工时分别为1,2,加工一件乙设备所需工时分别为2,1.A、B两种设备每月有效使用台时数分别为400和500,分别用表示计划每月生产甲,乙产品的件数.

(Ⅰ)用列出满足生产条件的数学关系式,并画出相应的平面区域;

(Ⅱ)问分别生产甲、乙两种产品各多少件,可使收入最大?并求出最大收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C:过点,离心率为

(1)求椭圆C的方程;

(2)设斜率为1的直线过椭圆C的左焦点且与椭圆C相交于A,B两点,求AB的中点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p>0,q>0,随机变量ξ的分布列如下:

ξ

p

q

P

q

p

若E(ξ)= .则p2+q2=(
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的非负半轴重合,且长度单位相同,直线的极坐标方程为,曲线(为参数).其中.

(1)试写出直线的直角坐标方程及曲线的普通方程;

(2)若点为曲线上的动点,求点到直线距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点F1、F2是椭圆C1的左右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2 , 椭圆C1与双曲线C2的离心率分别为e1、e2 , 则(
A.e22=
B.e22=
C.e22=
D.e22=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为,它在点处的切线为直线l.

(1)求直线l的直角坐标方程;

(2)设直线l的交点为P1,P2,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为正方形,PA⊥平面ABCD,PA∥BE,AB=PA=4,BE=2.
(Ⅰ)求证:CE∥平面PAD;
(Ⅱ)求PD与平面PCE所成角的正弦值;
(Ⅲ)在棱AB上是否存在一点F,使得平面DEF⊥平面PCE?如果存在,求 的值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案