精英家教网 > 高中数学 > 题目详情

【题目】对于定义域为的函数,如果同时满足以下三个条件:①任意的,总有;②;③若,总有成立,则称函数为理想函数.

1)证明:若函数为理想函数,则

2)证明:函数是理想函数;

3)证明:若函数为理想函数,假定存在,使得,则.

【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析.

【解析】

(1)分别代入题设条件进行分析即可.
(2)对①②直接根据二次函数的性质进行判断,对③需代入计算化简

证明即可.
(3),再根据题目条件代入分析论证即可.

(1)令,代入可得:即:,

又由条件①得:,故:

(2)对于函数,易得其值域,满足①要求;其中.满足②要求,若,,,

故满足③,综上所述:函数是理想函数;

(3)取,则:,因此:假设:,若,则;若,则,都与题设矛盾,所以假设不成立,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调递增区间;

(2)内角的对边分别为,若,且,试求角和角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值,由检测结果得到如下频率分布表和频率分布直方图.

分组

频数

频率

8

16

0.16

4

0.04

合计

100

1

1)求图中的值;

2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间内为合格品,重量在区间内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20.以抽检样本重量的频率分布作为该批零件重量的概率分布.若这批零件共400件,现有两种销售方案:

方案一:对剩余零件不再进行检测,回收处理这100件样本中的不合格品,余下所有零件均按150/件售出;

方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150/件售出,优质品按200/件售出.

仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究机构为了解某学校学生使用手机的情况,在该校随机抽取了60名学生(其中男、女生人数之比为21)进行问卷调查.进行统计后将这60名学生按男、女分为两组,再将每组学生每天使用手机的时间(单位:分钟)分为5组,得到如图所示的频率分布直方图(所抽取的学生每天使用手机的时间均不超过50分钟).

1)求出女生组频率分布直方图中的值;

2)求抽取的60名学生中每天使用手机时间不少于30分钟的学生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,丙所得为(

A.B.1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线在点处的切线方程为.

(1)求的解析式;

(2)判断方程内的解的个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列及函数),).

1)若等比数列满足,求数列的前)项和;

2)已知等差数列满足均为常数,,且),).试求实数对(),使得成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1+a2+a3+…+an=n-an,(n=1,2,3,…)

(Ⅰ)求证:数列{an-1}是等比数列;

(Ⅱ)令bn=(2-n)(an-1)(n=1,2,3,…),如果对任意n∈N*,都有bn+t≤t2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.

1)求曲线的普通方程和直线的直角坐标方程;

2)设为曲线上的一个动点,求点到直线距离的最小值.

查看答案和解析>>

同步练习册答案