【题目】如图所示,平面ABCD,四边形AEFB为矩形,,,.
(1)求证:平面ADE;
(2)求平面CDF与平面AEFB所成锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】某校学生会为了解高二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7场).随机抽取50名学生进行调查,将数据分组整理后,列表如下:
参加场数 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
占调查人数的百分比 | 8% | 10% | 20% | 26% | 18% | m% | 4% | 2% |
则以下四个结论中正确的是( )
A.表中m的数值为10
B.估计该年级参加中华传统文化活动场数不高于2场的学生约为108人
C.估计该年级参加中华传统文化活动场数不低于4场的学生约为216人
D.若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为15
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且和直线相切,动圆圆心形成的轨迹是曲线,过点的直线与曲线交于两个不同的点.
(1)求曲线的方程;
(2)在曲线上是否存在定点,使得以为直径的圆恒过点?若存在,求出点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为响应党中央号召,学校以“我们都是追梦人”为主题举行知识竞赛。现有10道题,其中6道甲类题,4道乙类题,王同学从中任取3道题解答.
(Ⅰ)求王同学至少取到2道乙类题的概率;
(Ⅱ)如果王同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立,已知王同学恰好选中2道甲类题,1道乙类题,用表示王同学答对题的个数,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1),在直角梯形中,为的中点,四边形为正方形,将沿折起,使点到达点,如图(2),为的中点,且,点为线段上的一点.
(1)证明:;
(2)当与夹角最小时,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】记.
(1)求方程的实数根;
(2)设,,均为正整数,且为最简根式,若存在,使得可唯一表示为的形式,试求椭圆的焦点坐标;
(3)已知,是否存在,使得成立,若存在,试求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点B(0,-2)和椭圆M:.直线l:y=kx+1与椭圆M交于不同两点P,Q.
(Ⅰ)求椭圆M的离心率;
(Ⅱ)若,求△PBQ的面积;
(Ⅲ)设直线PB与椭圆M的另一个交点为C,当C为PB中点时,求k的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com