精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为sn满足:sn=2an-2n(n∈N*)
(I)已知数列{cn}满足cn=an+2,求证数列{cn}为等比数列;
(II)若数列{bn}满足bn=lo
g
 
2
(an+2)
,Tn为数列(
bn
an+2
)
的前n项和,证:Tn
1
2
分析:(I)由Sn+2n=2an,知Sn=2an-2n.当n=1 时,S1=2a1-2,则a1=2,当n≥2时,Sn-1=2an-1-2(n-1),故an=2an-1+2,由此能够求出数列{an}的通项公式an
(II)由(I)可以求出bn=lo
g
 
2
(an+2)
=n+1,
bn
an+2
=
n+1
2n+1
,利用错位相减法求出Tn,再根据数列的函数性质证明证Tn
1
2
解答:解:(I)∵Sn=2an-2n,
当n∈N*时,Sn=2an-2n,①
当n=1时,S1=2a1-2,则a1=2,
则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2)
∵cn=an+2即cn=2cn-1
cn
cn-1
=2,
∴{cn}是以a1+2=4为首项,以2为公比的等比数列.
(II)由(Ⅰ)得出an+2=4•2n-1=2n+1
bn=lo
g
 
2
(an+2)
=n+1,
bn
an+2
=
n+1
2n+1

Tn=
2
22
+
3
23
+…+
n+1
2n+1

1
2
Tn=
2
23
+
3
24
+…+
n
2n+1
+
n+1
2n+2

两式相减
1
2
Tn=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=
1
2
+
1
23
[1-(
1
2
)n-1]
1-
1
2
-
n+1
2n+2

=
3
4
-
n+3
2n+2

Tn=
3
2
-
n+3
2n+1
,Tn+1-Tn=
n+2
2n+2
>0,
∴Tn的最小值为T1=
3
2
-
4
22
=
1
2

Tn
1
2
点评:本题考查等比数列的证明和数列求和,数列的函数性质,注意构造法和错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案