精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=4cosxsin(x+ )+a的最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的单调递增区间.

【答案】
(1)解:f(x)=4cosxsin(x+ )+a=2 sinxcosx+2cos2x+a= sin2x+cos2x+1+a=2sin(2x+ )+1+a,

∵sin(2x+ )≤1,

∴f(x)≤2+1+a,

∴由已知可得2+1+a=2,

∴a=﹣1,

∴f(x)=2sin(2x+ ),

∴T= =π.


(2)解:函数f(x)=2sin(2x+ ),

∴当2kπ﹣ ≤2x+ ≤2kπ+ 时,即kπ﹣ ≤x≤kπ+ ,k∈Z,函数单调增,

∴函数的单调递增区间为[kπ﹣ ,kπ+ ,](k∈Z).


【解析】(1)利用两角和公式和倍角公式对函数解析式化简整理,利用函数的最大值求得a,进而求得函数解析式和最小正周期.(2)利用正弦函数图象的性质,求得函数递增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱喷水的高度,某人在喷水柱正西方向的点A测的水柱顶端的仰角为45°,沿点A向北偏东30°前进100m到达点B.在B点测得水柱顶端的仰角为30°,则水柱的高度是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题甲:关于x的不等式x2+(a﹣1)x+a2>0的解集为R;命题乙:函数y=(2a2﹣a)x为增函数,当甲、乙有且只有一个是真命题时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若向量 =(﹣cosB,sinC), =(﹣cosC,﹣sinB),且 . (Ⅰ)求角A的大小;
(Ⅱ)若b+c=4,△ABC的面积 ,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= AB=1,M为PB中点.

(1)证明:CM∥平面PAD;
(2)求二面角A﹣MC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(﹣2,1), =(3,﹣4).
(1)求( + )(2 )的值;
(2)求向量 + 的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2﹣a2=bc.
(1)求角A的大小;
(2)若a= ,且△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求 的最小正周期和最大值;
(2)讨论 上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知0<α<π,sin(π﹣α)+cos(π+α)=m.
(1)当m=1时,求α;
(2)当 时,求tanα的值.

查看答案和解析>>

同步练习册答案