【题目】已知曲线C1的参数方程为 (为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线C2: .
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)若C1与C2相交于A、B两点,设点F(1,0),求 的值.
【答案】
(1)解:∵曲线C1的参数方程为 (为参数),
∴ ,∴ ,
∴曲线C1的普通方程为 .
∵曲线C2: ,∴3ρ2+ρ2sin2θ=12,
∴3(x2+y2)+y2=12,∴3x2+4y2=12,
∴C2的直角坐标方程为 .
(2)解:由题意可设,与A、B两点对应的参数分别为t1,t2,
将C1的参数方程代入C2的直角坐标方程 ,
化简整理得,5t2+4t﹣12=0,∴ ,
∴ ,
∵ ,∴ ,
∴
【解析】(1)曲线C1的参数方程消去参数能求出曲线C1的普通方程;由曲线C2极坐标方程,能求出C2的直角坐标方程.(2)由题意可设,与A、B两点对应的参数分别为t1,t2,将C1的参数方程代入C2的直角坐标方程,得:5t2+4t﹣12=0,由此能求出
科目:高中数学 来源: 题型:
【题目】已知双曲线C: =1(b>a>0)的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使 =0,则双曲线离心率的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|+|2x+2|﹣5(a∈R). (Ⅰ)试比较f(﹣1)与f(a)的大小;
(Ⅱ)当a≥﹣1时,若函数f(x)的图象和x轴围成一个三角形,则实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C:y2=4x,M:(x﹣1)2+y2=4(x≥1),直线l与曲线C相交于A、B两点,O为坐标原点.
(Ⅰ)若 ,求证:直线l恒过定点,并求出定点坐标;
(Ⅱ)若直线l与曲线C1相切,M(1,0),求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C所对的边分别为a,b,c,且A=2C.
(1)若△ABC为锐角三角形,求 的取值范围;
(2)若b=1,c=3,求△ABC的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】直线 与圆x2+y2=1相交于A、B两点(其中a,b是实数),且△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(0,1)之间距离的最小值为( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)设点P(m,0),若直线l与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且ctanC= (acosB+bcosA).
(1)求角C;
(2)若c=2 ,求△ABC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数y=f(x),恒有f(x)=f(2﹣x)成立,且f′(x)(x﹣1)>0,对任意的x1<x2 , 则f(x1)<f(x2)成立的充要条件是( )
A.x2>x1≥1
B.x1+x2>2
C.x1+x2≤2
D.x2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com