【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“, 两项作品未获得一等奖”;
丁说:“作品获得一等奖”.
若这四位同学只有两位说的话是对的,则获得一等奖的作品是( )
A. B. C. D.
科目:高中数学 来源: 题型:
【题目】已知函数y=Asin(ωx+φ)(A>0,ω>0,)的图象过点,图象与P点最近的一个最高点坐标为.
(1)求函数解析式;
(2)求函数的最小值,并写出相应的x值的集合;
(3)当时,求函数的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|﹣|x|+a.
(1)若a=0,求不等式f(x)≥x的解集;
(2)若对任意x∈R,f(x)≥0恒成立,求a的范围;
(3)若方程f(x)=x有三个不同的解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f1(x)=x2,f2(x)=alnx(其中a>0).
(1)求函数f(x)=f1(x)·f2(x)的极值;
(2)若函数g(x)=f1(x)-f2(x)+(a-1)x在区间(,e)内有两个零点,求正实数a的取值范围;
(3)求证:当x>0时,.(说明:e是自然对数的底数,e=2.71828…)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数 ,其中 .
(1)试讨论函数 的单调性;
(2)已知当 (其中 是自然对数的底数)时,在 上至少存在一点 ,使 成立,求 的取值范围;
(3)求证:当 时,对任意 ,,有 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2019·武邑中学]已知关于的一元二次方程,
(1)若一枚骰子掷两次所得点数分别是,,求方程有两根的概率;
(2)若,,求方程没有实根的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com