精英家教网 > 高中数学 > 题目详情

【题目】设Sn是数列{an}的前n项和,且a1=﹣1, =Sn , 求数列{an}的前n项和Sn= , 通项公式an=

【答案】﹣
【解析】解:由Sn是数列{an}的前n项和,且a1=﹣1, =Sn , ∴an+1=SnSn+1
∴Sn+1﹣Sn=Sn+1Sn , 两边同除以Sn+1Sn
=1,即 =﹣1,
=﹣1,
∴{ }是首项为﹣1,公差为﹣1的等差数列,
=﹣1+(n﹣1)×(﹣1)=﹣n.
∴Sn=﹣
当n=1时,a1=S1=﹣1,
n≥2时,an=Sn﹣Sn1=﹣ + =
∴an=
故答案为:﹣
由题意可知:an+1=SnSn+1 , 即Sn+1﹣Sn=Sn+1Sn , 两边同除以Sn+1Sn , 整理得: =﹣1,则{ }是首项为﹣1,公差为﹣1的等差数列,由等差数列通项公式可知: =﹣1+(n﹣1)×(﹣1)=﹣n,则Sn=﹣ ;由当n=1时,a1=S1=﹣1,n≥2时,an=Sn﹣Sn1=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=2,an+1=an2+6an+6(n∈N×
(1)设Cn=log5(an+3),求证{Cn}是等比数列;
(2)求数列{an}的通项公式;
(3)设bn= ,数列{bn}的前n项和为Tn , 求证:﹣ ≤Tn<﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,其左、右焦点为F1、F2 , 点P是坐标平面内一点,且|OP|= = ,其中O为坐标原点.

(1)求椭圆C的方程;
(2)如图,过点S(0,﹣ )的动直线l交椭圆于A、B两点,是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:若函数的定义域为,且存在非零常数,对任意 恒成立,则称为线周期函数, 的线周期.

(1)下列函数①,②,③(其中表示不超过x的最大整数),是线周期函数的是 (直接填写序号);

(2)若为线周期函数,其线周期为,求证: 为周期函数;

(3)若为线周期函数,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC
(1)求角C大小;
(2)求 sinA﹣cos(B+ )的最大值,并求取得最大值时角A,B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在直线3x+y﹣1=0上,且圆C在x轴、y轴上截得的弦长AB和MN分别为
(1)求圆C的方程;
(2)若圆心C位于第四象限,点P(x,y)是圆C内一动点,且x,y满足 ,求 的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= + 的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 的参数方程为 为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,圆 的极坐标方程为 .
(1)写出圆 的直角坐标方程;
(2) 为直线 上一动点,当 到圆心 的距离最小时,求 的直角坐标.

查看答案和解析>>

同步练习册答案