精英家教网 > 高中数学 > 题目详情
20.设数列{an}的前n项和为Sn,a1=1,Sn+1=4an+2.求证:{an+1-2an}为等比数列.

分析 Sn+1=4an+2,a1=1,当n=1时,1+a2=4×1+2,解得a2;当n≥2时,an+1=Sn+1-Sn,变形为an+1-2an=2(an-2an-1),即可证明;

解答 证明:∵Sn+1=4an+2,a1=1,
∴当n=1时,1+a2=4×1+2,解得a2=5;
当n≥2时,an+1=Sn+1-Sn=4an+2-(4an-1+2),
化为an+1=4an-4an-1
∴an+1-2an=2(an-2an-1),
∴数列:{an+1-2an}是等比数列,首项为a2-2a1=3,公比为2.

点评 本题主要考查等比数列的判断和证明,根据数列的递推关系利用构造法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知直线y=$\frac{1}{2}$x+m经过双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)的左焦点F,交y轴于点P,c为双曲线的半焦距,O为坐标原点,若|OP|,2a,|OF|成等比数列,求此双曲线的离心率和渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点F1,F2为双曲线C:x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线于点M,且∠MF1F2=30°,圆O的方程为x2+y2=b2
(1)求双曲线C的方程;
(2)过圆O上任意一点Q(x0,y0)作切线l交双曲线C于A,B两个不同点,AB中点为N,求证|$\overrightarrow{AB}$|=2|$\overrightarrow{ON}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)是R上的奇函数,且x>0时,f(x)=x2-x-1,求f(x)解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知(a2+b2)-abi与13+6i是共轭复数,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题:①方程$\sqrt{x-2}$+|y+2|=0的解集为{2,-2};②集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};③集合{x|x-2>0}与集合{x|x<m,m∈R}没有公共元素,其中不正确的是①②③(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在正方形ABCD-A1B1C1D1中,
(1)求异面直线AD1与BD所成角的大小;
(2)求二面角D1-CB-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知13x3+mx2+11x+n能被13x2-6x+5整除,求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图所示的多面体中,ABCD是菱形,BDEF是矩形,ED⊥面ABCD,∠BAD=$\frac{π}{3}$.
(1)求证:BC∥平面AED;
(2)求证:AC⊥面BDEF;
(3)若BF=BD=a,求四棱锥A-BDEF的体积.

查看答案和解析>>

同步练习册答案