精英家教网 > 高中数学 > 题目详情

市内电话费是这样规定的,每打一次电话不超过3分钟付电话费0.18元,超过3分钟而不超过6分钟的付电话费0.36元,依次类推,每次打电话分钟应付话费y元,写出函数解析式并画出函数图象.

解析试题分析:解:由题意可知:
      
  
考点:函数的解析式;函数的图像
点评:在高中阶段中,画出函数的图像是解决函数问题的关键。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

定义域为的函数,其导函数为.若对,均有,则称函数上的梦想函数.
(Ⅰ)已知函数,试判断是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数)为其定义域上的梦想函数,求的取值范围;
(Ⅲ)已知函数)为其定义域上的梦想函数,求的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数时,求曲线在点处的切线方程;求函数的极值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a为实数,
⑴求导数
⑵若,求在[-2,2] 上的最大值和最小值;
⑶若在(-∞,-2)和(2,+∞)上都是递增的,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数上的最小值
(2)对一切的恒成立,求实数a的取值范围
(3)证明对一切,都有成立

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知不等式
(1)若对所有的实数不等式恒成立,求的取值范围;
(2)设不等式对于满足的一切的值都成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数满足,且在定义域内恒成立,求实数的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求的单调区间,如果函数仅有两个零点,求实数的取值范围;
(2)当时,试比较与1的大小.

查看答案和解析>>

同步练习册答案