精英家教网 > 高中数学 > 题目详情
17.两圆x2+y2=9和x2+y2-8x+6y+9=0的位置关系是(  )
A.外切B.内切C.相交D.外离

分析 把圆的方程化为标准形式,求得圆心和半径,再根据两圆的圆心距d=5,大于半径之差而小于半径之和,故它们相交.

解答 解:圆x2+y2=9的圆心为O(0,0)、半径等于3;圆x2+y2-8x+6y+9=0,即(x-4)2+(y+3)2 =16,表示以C(4,-3)为圆心、半径等于4的圆,
两圆的圆心距d=|CO|=5,大于半径之差而小于半径之和,故它们相交,
故选:C.

点评 本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.求函数f(x)=($\frac{1}{4}$)x-($\frac{1}{2}$)x+1(-3≤x≤2)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的通项an=n(n+4)($\frac{2}{3}$)n,试问该数列{an}是否有最大项?若有,求最大项的项数;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.根据如下样本数据
x34567
y4.02.50.50.52.0
得到的回归方程为$\widehat{y}$=bx+a.若a=7.9,则b的值为-1.4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知R为实数集,集合A={x|x2-3x+2≤0},C={x∈Z|y=$\sqrt{1-|x-2|}$},若B∪∁RA=R,B∩∁RA={x|0<x<1或2<x<3},则B∩C=(  )
A.{x|1≤x<3}B.{1,2}C.{x|0<x<3}D.{0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用数学归纳法证明“1+2+…+n+(n-1)…+2+1=n2(n∈N+)”,从n=k到n=k+1时,左边添加的代数式为(  )
A.k+1B.k+2C.k+1+kD.2(k+1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an},其中a1=1,an+1=2nan+4,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.计算下列各式.
(1)化简:$\frac{{{{sin}^2}(α+π)•cos(π+α)•cot(-α-2π)}}{{tan(π+α)•{{cos}^3}(-α-π)}}$
(2)求值:(0.064)${\;}^{-\frac{1}{3}}$+[(-2)-3]${\;}^{\frac{4}{3}}$+16-0.75-lg$\sqrt{0.1}$-log29×log32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,满足Sn+2=2an(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=log2an,Tn=$\frac{b_1}{a_1}+\frac{b_2}{a_2}+…+\frac{b_n}{a_n}$,求Tn

查看答案和解析>>

同步练习册答案