精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,.

1)求平面与平面所成锐二面角的余弦值;

2)点是线段上的动点,当直线所成的角最小时,求线段的长.

【答案】1;(2.

【解析】

1)以为原点,以分别为轴建立空间直角坐标系,利用平面的法向量可解得结果;

2)向量夹角的余弦值的绝对值的最大值等价于直线所成的角最小,利用向量法可解得结果.

1)因为平面,所以,又

所以以为原点,以分别为轴建立如图所示的空间直角坐标系:

所以

因为,所以平面

所以是平面的一个法向量,

因为

设平面的法向量为,则

,令,解得

所以是平面的一个法向量,从而

所以平面与平面所成的锐二面角的余弦值为

2 因为,设

,则

从而

当且仅当,即时,的最大值为

因为上是减函数,所以此时直线所成角取得最小值.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查某校高二学生的身高是否与性别有关,随机调查该校64名高二学生,得到2×2列联表如表:

男生

女生

总计

身高低于170cm

8

24

32

身高不低于170cm

26

6

32

总计

34

30

64

附:K2

PK2k0

 0.050

 0.010

 0.001

 k0

3.841

6.635

 10.828

由此得出的正确结论是(

A.在犯错误的概率不超过0.01的前提下,认为“身高与性别无关”

B.在犯错误的概率不超过0.01的前提下,认为“身高与性别有关”

C.99.9%的把握认为“身高与性别无关”

D.99.9%的把握认为“身高与性别有关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数.

(1)若,求曲线在点处的切线方程;

(2)若函数有且只有一个零点,求实数的取值范围;

(3)若函数恒成立,求实数的取值范围.(是自然对数的底数,)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的一个顶点为,且过抛物线的焦点F

(1)求椭圆C的方程及离心率;

(2)设点Q是椭圆C上一动点,试问直线上是否存在点P,使得四边形PFQB是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为,其中为参数,在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为.

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点.求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.

(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?

(2)每名学生都被随机分配到其中的一个公园,设分别表示5名学生分配到王城公园和牡丹公园的人数,记,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若,判断函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为焦点的双曲线上,过轴的垂线,垂足为,若四边形为菱形,则该双曲线的离心率为( )

A. B. 2 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如下图:

甲校 乙校

(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在内的概率;

(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。

甲校

乙校

总计

优秀

不优秀

总计

参考数据

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

span>3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步练习册答案