精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax﹣1﹣lnx(a∈R).
(1)当a=1时,求曲线在点(1,0)处的切线方程;
(2)求函数f(x)在区间 上的最小值.

【答案】
(1)解:函数f(x)的定义域为(0,+∞),

当a=1时,f′(x)=1﹣ ,则f'(1)=0,故曲线在点(1,0)处的切线为y=0


(2)解:f′(x)= (x>0),则:

①当a≤0时,f'(x)<0,

此时f(x)在[ ,2]上单减,故f(x)min=f(2)=2a﹣1﹣ln2

②当a>0时,

(Ⅰ)0< ,即a≥2,f(x)在上单增,故f(x)min=f( )= ﹣1+ln2;

(Ⅱ) <2,即 <a<2,f(x)在[ )单减,在[ ,2]单增,故f(x)min=f( )=lna.

(Ⅲ) ≥2,即0<a≤ ,f(x)在[ ,2]上单减,故f(x)min=f(2)=2a﹣1﹣ln2,

综上f(x)min=


【解析】(1)利用导数与曲线斜率的公式即可求得结论;(2)分类讨论,利用导数即可求得函数的最小值.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知长方体ABCD﹣A1B1C1D1中,底面ABCD为正方形,DD1⊥平面ABCD,AB=4,AA1=2,点E1在棱C1D1上,且D1E1=3.

(Ⅰ)在棱CD上确定一点E,使得直线EE1∥平面D1DB,并写出证明过程;
(Ⅱ)若动点F在正方形ABCD内,且AF=2,请说明点F的轨迹,探求E1F长度的最小值并求此时直线E1F与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC⊥BC,点D是AB的中点.求证:

(1)AC⊥BC1
(2)AC1∥平面B1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点p(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2﹣2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x﹣1)f′(x)<0的解集为(
A.(﹣∞, )∪(1,2)
B.(﹣1,1)∪(1,3)
C.(﹣1, )∪(3,+∞)
D.(﹣∞,﹣1)∪(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,对a∈R,b∈(0,+∞),使得f(a)=g(b),则b﹣a的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一(2)班共有60名同学参加期末考试,现将其数学学科成绩(均为整数)分成六个分数段[40,50),[50,60),…,[90,100],画出如图所示的部分频率分布直方图,请观察图形信息,回答下列问题:
(1)求a并估计这次考试中该学科的中位数、平均值;
(2)现根据本次考试分数分成下列六段(从低分段到高分段依次为第一组、第二组…第六组)为提高本班数学整体成绩,决定组与组之间进行帮扶学习.若选出的两组分数之差不小于30分(以分数段为依据,不以具体学生分数为依据,如:[40,50),[70,80)这两组分数之差为30分),则称这两组为“最佳组合”,试求选出的两组为“最佳组合”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆x2+y2﹣6x+4y=3的圆心坐标与半径是( )
A.
B.
C.(﹣3,2)4
D.(3,﹣2)4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+blnx在x=1处有极值
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的单调区间.

查看答案和解析>>

同步练习册答案