精英家教网 > 高中数学 > 题目详情
随机变量X的分布列如下表,且E(X)=1.1,则D(X)=______.
X01x
P
1
5
p
3
10
1
5
+p+
3
10
=1得,p=0.5,
由E(X)=1.1,得0×
1
5
+1×0.5+
3
10
x=1.1,解得x=2,
所以D(X)=(0-1.1)2×
1
5
+(1-1.1)2×0.5+(2-1.1)2×
3
10
=0.49,
故答案为:0.49.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

一袋中有同样大小的球10个,其中有8个标有1元钱,2个标有5元钱,交5元钱,可以参加一次摸奖,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人获利的数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本大题共14分)一袋中装有分别标记着1,2,3,4数字的4只小球,每次从袋中取出一只球,设每只小球被取到的可能性相同.(1)若每次取出的球不放回袋中,求恰好第三次取到标号为3的球的概率;(2)若每次取出的球放回袋中,然后再取出一只球,现连续取三次球,若三次取出的球中标号最大的数字为,求的概率分布列与期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若随机变量X的分布列如下表,则E(X)=(  )
X012345
P2x3x7x2x3xx
A.
1
18
B.
1
9
C.
9
20
D.
20
9

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在一个不透明的纸袋里装有5个大小相同的小球,其中有1个红球和4个黄球,规定每次从袋中任意摸出一球,若摸出的是黄球则不再放回,直到摸出红球为止,求摸球次数ξ的期望和方差.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设集合A={1,2,3,…8,9}当x∈A时,若有x+1∉A且x-1∉A则称元素x是集合A的一个孤立元.在集合A中任取3个不同的数.
(Ⅰ)求这3个数中恰有1个是奇数的概率;
(Ⅱ)设ξ为这3个数中孤立元的个数(例如:若取出的数为1,2,4,则孤立元为4,此时ξ的值是1),求随机变量ξ的分布列及其数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,一个小球从M处投入,通过管道自上而下落A或B或C.已知小球从每个叉口落入左右两个管道的可能性是相等的.某商家按上述投球方式进行促销活动,若投入的小球落到A,B,C,则分别设为l,2,3等奖.
(I)已知获得l,2,3等奖的折扣率分别为50%,70%,90%.记随变量ξ为获得k(k=1,2,3)等奖的折扣率,求随机变量ξ的分布列及期望Εξ;
(II)若有3人次(投入l球为l人次)参加促销活动,记随机变量η为获得1等奖或2等奖的人次,求P(η=2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,机器人海宝按照以下程序运行:
①从A出发到达点B或C或D,到达点B、C、D之一就停止
②每次只向右或向下按路线运行
③在每个路口向下的概率
1
3

④到达P时只向下,到达Q点只向右
(1)求海宝过点从A经过M到点B的概率,求海宝过点从A经过N到点C的概率;
(2)记海宝到点B、C、D的事件分别记为X=1,X=2,X=3,求随机变量X的分布列及期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

运行如图所示的程序框图,则输出的运算结果是_____________

查看答案和解析>>

同步练习册答案