精英家教网 > 高中数学 > 题目详情

(本小题满分12分) 已知二次函数满足条件,及.
(1)求的解析式;(2)求上的最大和最小值.

(1);(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)计算:
(1)0.25×-4÷
(2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,,其中是自然常数).
(Ⅰ)求的单调性和极小值;
(Ⅱ)求证:上单调递增;
(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学利用暑假时间到一家商场勤工俭学,该商场向他提供了三种付款方式:第一种,每天支付38圆;第二种,第一天付4元,第二天付8元,第三天付12元,以此类推:第三种,第一天付0.4元,以后每天比前一天翻一番(即增加一倍),
你会选择哪种方式领取报酬呢?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若天购买一次,需要支付天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.
(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[
(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数处取得极值,且在点处的切线与直线平行. 
(1)求的解析式;      (2)求函数的单调递增区间及极值;
(3)求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的最大值和最小值;   
(2)求实数的取值范围,使在区间上是单调函数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
某公司生产一种电了仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
  ,其中是仪器的月产量。
⑴将利润表示为月产量的函数
⑵当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益―总成本=利润)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某出版社新出版一本高考复习用书,该书的成本为元一本,经销过程中每本书需付给代理商的劳务费,经出版社研究决定,新书投放市场后定价为元一本,,预计一年的销售量为万本.
(Ⅰ)求该出版社一年的利润(万元)与每本书的定价的函数关系式;
(Ⅱ)若时,当每本书的定价为多少元时,该出版社一年利润最大,并求出的最大值.

查看答案和解析>>

同步练习册答案