精英家教网 > 高中数学 > 题目详情
已知点(x0,y0)不在曲线f(x,y)=0上,曲线f(x,y)+af(x0,y0)=0(a∈R,且a≠0)与曲线f(x,y)=0的交点有(  )
A、0个B、1个C、2个D、无数个
考点:曲线与方程
专题:计算题,直线与圆
分析:由已知f(x0,y0)≠0,设P(x1,y1)是f(x,y)=0上的点,则f(x1,y1)=0,判断P(x1,y1)不在曲线f(x,y)+af(x0,y0)=0上,即可得出结论.
解答: 解:由已知f(x0,y0)≠0,设P(x1,y1)是f(x,y)=0上的点,则f(x1,y1)=0,
但f(x1,y1)+af(x0,y0)≠0,即P(x1,y1)不在曲线f(x,y)+af(x0,y0)=0上.
故选A.
点评:本题考查曲线与方程,考查学生分析解决问题的能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某袋中有10个乒乓球,其中有7个新、3个旧球,从袋中任取3个来用,用后放回袋中(新球用后变为旧球),记此时袋中旧球个数为X,求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
2
cosxsin(x+
π
4
).
(Ⅰ)求函数f(x)的最小正周期及最大值;
(Ⅱ)写出函数f(x)在[0,π]上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,从该城市市民中随机抽取年龄段在20~80岁(含20岁和80岁)之间的600人进行调查,并按年龄层次[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]绘制频率分布直方图,如图所示.若规定年龄分布在[20,40)岁的人为“青年人”,[40,60)为“中年人”,[60,80]为“老年人”.

(Ⅰ)若每一组数据的平均值用该区间中点值来代替,试估算所调查的600人的平均年龄;
(Ⅱ)将上述人口分布的频率视为该城市在20-80年龄段的人口分布的概率.从该城市20-80年龄段市民中随机抽取3人,记抽到“老年人”的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y满足:x+y=
π
4
且x,y≠kπ+
π
2
(k∈Z),则(1+tanx)(1+tany)=(  )
A、-2B、2C、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线C1:x2+y2-4x=0与曲线C2:y(y-mx-x)=0有四个不同的交点,则实数m的取值范围是(  )
A、(-
2
5
5
2
5
5
B、(-
2
5
5
,0)∪(0,
2
5
5
C、[-
3
3
3
3
]
D、(-∞,-
3
3
)∪(
3
3
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

在我市2015年“创建文明城市”知识竞赛中,考评组从中抽取200份试卷进行分析,其分数的频率分布直方图如图所示,则分数在区间[60,70)上的人数大约有
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C的对边分别为a,b,c,已知a-b=2,c=4,sinA=2sinB.
(Ⅰ)求△ABC的面积;
(Ⅱ)求sin(2A-B).

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=1-2|x|的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

同步练习册答案