在数列中,,当时,
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前项和.
【解析】本试题主要考查了数列的通项公式的求和 综合运用。第一问中 ,利用,得到且,故故为以1为首项,公差为2的等差数列. 从而
第二问中,
由及知,从而可得且
故为以1为首项,公差为2的等差数列.
从而 ……………………6分
(2)……………………9分
科目:高中数学 来源: 题型:
(08年安庆市二模理)(14分)在数列中,,当时,其前项和满足.
(1)求;
(2)设,求数列的前项和.
(3)是否存在自然数m,使得对任意,都有成立?若存在求出m的最大值;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海市十三校高三12月联考文科数学试卷(解析版) 题型:填空题
已知无穷数列具有如下性质:①为正整数;②对于任意的正整数,当为偶数时,;当为奇数时,.在数列中,若当时,,当时,(,),则首项可取数值的个数为 (用表示)
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海市十三校高三12月联考理科数学试卷(解析版) 题型:填空题
已知无穷数列具有如下性质:①为正整数;②对于任意的正整数,当为偶数时,;当为奇数时,.在数列中,若当时,,当时,(,),则首项可取数值的个数为 (用表示)
查看答案和解析>>
科目:高中数学 来源:2013-2014学年上海市十三校高三12月联考文科数学试卷(解析版) 题型:填空题
已知无穷数列具有如下性质:①为正整数;②对于任意的正整数,当为偶数时,;当为奇数时,.在数列中,若当时,,当时,(,),则首项可取数值的个数为 (用表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com