精英家教网 > 高中数学 > 题目详情

在数列中,,当时, 

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前项和.

【解析】本试题主要考查了数列的通项公式的求和 综合运用。第一问中 ,利用,得到,故故为以1为首项,公差为2的等差数列. 从而     

第二问中,

,从而可得

为以1为首项,公差为2的等差数列.

从而      ……………………6分

(2)……………………9分

 

【答案】

      (2)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(08年安庆市二模理)(14分)在数列中,,当时,其前项和满足

(1)求

(2)设,求数列的前项和

         (3)是否存在自然数m,使得对任意,都有成立?若存在求出m的最大值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海市十三校高三12月联考文科数学试卷(解析版) 题型:填空题

已知无穷数列具有如下性质:①为正整数;②对于任意的正整数,当为偶数时,;当为奇数时,.在数列中,若当时,,当时,),则首项可取数值的个数为    (用表示)

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海市十三校高三12月联考理科数学试卷(解析版) 题型:填空题

已知无穷数列具有如下性质:①为正整数;②对于任意的正整数,当为偶数时,;当为奇数时,.在数列中,若当时,,当时,),则首项可取数值的个数为    (用表示)

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年上海市十三校高三12月联考文科数学试卷(解析版) 题型:填空题

已知无穷数列具有如下性质:①为正整数;②对于任意的正整数,当为偶数时,;当为奇数时,.在数列中,若当时,,当时,),则首项可取数值的个数为    (用表示)

 

查看答案和解析>>

科目:高中数学 来源:2012届贵州省六盘水市高三11月月考数学理科试卷 题型:解答题

在数列中,,当时,其前项和满足

1)求

2)设,求数列的前项和

3)求

 

查看答案和解析>>

同步练习册答案