精英家教网 > 高中数学 > 题目详情

【题目】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.

(1)写出第一次服药后,y与t之间的函数关系式y=f(t);

(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?

【答案】(1) ; (2)服药一次后治疗有效的时间是5-小时.

【解析】

(1)由函数图象的奥这是一个分段函数,第一段为正比例函数的一段,第二段是指数函数的一段,由于两端函数均过点,代入点的坐标,求出参数的值,即可得到函数的解析式;

(2)由(1)的结论将函数值代入函数的解析式,构造不等式,求出每毫升血液中函数不少于微克的起始时刻和结束时刻,即可得到结论.

(1)由题意,根据给定的函数的图象,可设函数的解析式为

又由函数的图象经过点

则当时,,解得

又由时,解得

所以函数的解析式为.

(2)由题意,令,即当时,,解得

时,,解得

综上所述,可得实数的取值范围是

所以服药一次后治疗有效的时间是小时.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某果农选取一片山地种植红柚,收获时,该果农随机选取果树20株作为样本测量它们每一株的果实产量(单位:),获得的所有数据按照区间进行分组,得到频率分布直方图如图。已知样本中产量在区间上的果树株数是产量在区间上的果树株数的倍。

(1)求的值;

(2)求样本的平均数和中位数。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一个动点到点的距离比到直线的距离多1.

(1)求动点的轨迹的方程;

(2)若过点的直线与曲线交于两点,且线段中点是点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,点的中点,欲过点作一截面与平面平行.

(I)问应当怎样画线,并说明理由;

(II)求所作截面与平面将三棱柱分成的三部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间;

(2)当时,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点P是函数图象上任意一点,点Q坐标为,当取得最小值时圆与圆相外切,则的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求的定义域;

2)试判断函数在区间上的单调性,并给出证明;

3)若在区间上恒取正值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】砥砺奋进的五年,首都经济社会发展取得新成就.2012年以来,北京城乡居民收入稳步增长.随着扩大内需,促进消费等政策的出台,居民消费支出全面增长,消费结构持续优化升级,城乡居民人均可支配收入快速增长,人民生活品质不断提升.下图是北京市2012-2016年城乡居民人均可支配收入实际增速趋势图(例如2012年,北京城镇居民收入实际增速为7.3%,农村居民收入实际增速为8.2%.

Ⅰ)从2012-2016五年中任选一年,求城镇居民收入实际增速大于7%的概率;

Ⅱ)从2012-2016五年中任选一年,求至少有一年农村和城镇居民收入实际增速均超过7%的概率;

Ⅲ)由图判断,从哪年开始连续三年农村居民收入实际增速方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,离心率

(I)求椭圆C的标准方程;

(II)已知直线交椭圆C于A,B两点.

①若直线经过椭圆C的左焦点F,交y轴于点P,且满足.求证:为定值;

②若,求面积的取值范围.

查看答案和解析>>

同步练习册答案