精英家教网 > 高中数学 > 题目详情
14.用符号“⇒,?,?”表示下列事件的推出关系:
(1)α:实数x满足x2=4,β:x=2,α?β;
(2)α:x<2,β:x<3,α⇒β;
(3)α:A?B,β:A∪B=A,α?β

分析 (1)α:实数x满足x2=4,解得x=±2,即可判断出关系;
(2)利用集合的性质、不等式的性质、充要条件的定义即可得出关系;
(3)由β:A∪B=A,可得:A?B,反之也成立.

解答 解:(1)α:实数x满足x2=4,解得x=±2,β:x=2,因此α?β;
(2)α:x<2,β:x<3,可得:α⇒β;
(3)α:A?B,β:A∪B=A,可得:α?β.
故答案分别为:?;⇒;?.

点评 本题考查了集合的运算性质、简易逻辑的判定方法、不等式与方程的解法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax(lnx-1)(a∈R且a≠0).
(1)求函数y=f(x)的单调递增区间;
(2)当a>0时,设函数g(x)=$\frac{1}{6}$x3-f(x),函数h(x)=g′(x),若h(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.交通管理部门为了解机动车驾驶员(简称驾驶员)对酒驾的了解情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员216人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,24,43.则这四社区驾驶员的总人数N为(  )
A.2160B.1860C.1800D.1440

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=ex-a(x-1).
(1)求函数f(x)的单调区间和极值;
(2)当a>0时,若函数f(x)在区间(0,2]上存在唯一零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据如表样本数据:
x12345
y210-1-2
得到的回归方程$\stackrel{∧}{y}$=bx+a,则(  )
A.a<0,b<0B.a<0,b>0C.a>0,b>0D.a>0,b<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各式中,值为$\frac{1}{2}$的是(  )
A.sin15°cos15°B.cos2$\frac{π}{12}$-sin2$\frac{π}{12}$
C.cos12°sin42°-sin12°cos42°D.$\frac{{2tan{{22.5}°}}}{{1-{{tan}^2}{{22.5}°}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{3n+1}$,则f(k+1)-f(k)等于(  )
A.$\frac{1}{3(k+1)+1}$B.$\frac{1}{3k+2}$
C.$\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$D.$\frac{1}{3k+4}$-$\frac{1}{k+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.实数x,y满足$\left\{\begin{array}{l}{x+4y≥0}\\{x-4y+4≥0}\\{x-2y≤0}\end{array}\right.$,则3x-2y的取值范围是(-7,10).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知$\overrightarrow a$,$\overrightarrow b$均为单位向量,它们的夹角为60°,$\overrightarrow c$=$\overrightarrow a$-2$\overrightarrow b$,则下列结论正确的是(  )
A.$\overrightarrow a$∥$\overrightarrow c$B.$\overrightarrow b$∥$\overrightarrow c$C.$\overrightarrow a$⊥$\overrightarrow c$D.$\overrightarrow b$⊥$\overrightarrow c$

查看答案和解析>>

同步练习册答案