精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面为直角梯形,,平面底面的中点,是棱上的点,

1)求证:平面平面

2)若为棱的中点,求异面直线所成角的余弦值;

3)若二面角大小为,求的长.

【答案】(1)详见解析;(2);(3).

【解析】

1)由题意先证明,由面面垂直的性质定理得平面,再运用面面垂直的判定定理证明

2)以为原点建立空间直角坐标系,求出直线的向量表示,然后运用空间向量知识求出异面直线所成角的余弦值

3)结合(2)中的空间直角坐标系,运用向量知识结合二面角为求出结果

(1)证明:的中点,

∴四边形为平行四边形,

平面平面,且平面平面

平面

平面 ∴平面平面

(2)解: 的中点,

∵平面平面,且平面平面

平面

如图,以 为原点建立空间直角坐标系,

的中点,

设异面直线所成角为

∴异面直线所成角的余弦值为

(3)解:由(2)知平面的法向量为

设平面 法向量为

可取

∵二面角为60°,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的一个焦点为,点在椭圆

(Ⅰ)求椭圆的方程与离心率;

(Ⅱ)设椭圆上不与点重合的两点 关于原点对称,直线 分别交轴于 两点求证:以为直径的圆被轴截得的弦长是定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.

(1)求证:EF∥平面PAB;

(2)若PB与平面ABCD所成角的正弦值为,求二面角P-AE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x+

1)若关于x的不等式f3x)≤m3x+2[-22]上恒成立.求实数m的取值范围;

2)若函数gx=f|2x-1|-3t-2有四个不同的零点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】试用恰当的方法表示下列集合.

1)使函数有意义的x的集合;

2)不大于12的非负偶数;

3)满足不等式的解集;

4)由大于10小于20的所有整数组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若恒成立,求的取值范围;

(2)证明:不等式对于正整数恒成立,其中为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表,解答下列问题:

(1)完成频率分布表(直接写出结果);

(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.

分组

频数

频率

第1组

[60.5,70.5)

0.26

第2组

[70.5,80.5)

17

第3组

[80.5,90.5)

18

0.36

第4组

[90.5,100.5]

合计

50

1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元)

(1)分别将AB两种产品的利润表示为投资的函数关系式;

(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产.

若平均投入生产两种产品,可获得多少利润?

问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,公园内有一块边长为的正三角形空地,拟改建成花园,并在其中建一直道方便花园管理. 分别在上,且均分三角形的面积.

1)设),,试将表示为的函数关系式;

2)若是灌溉水管,为节约成本,希望其最短,的位置应在哪里?若是参观路线,希望其最长,的位置应在哪里?

查看答案和解析>>

同步练习册答案