【题目】如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.
(1)求证:平面平面;
(2)若为棱的中点,求异面直线与所成角的余弦值;
(3)若二面角大小为,求的长.
【答案】(1)详见解析;(2);(3).
【解析】
(1)由题意先证明,由面面垂直的性质定理得平面,再运用面面垂直的判定定理证明
(2)以为原点建立空间直角坐标系,求出直线与的向量表示,然后运用空间向量知识求出异面直线所成角的余弦值
(3)结合(2)中的空间直角坐标系,运用向量知识结合二面角为求出结果
(1)证明:为的中点,
∴四边形为平行四边形,
即
又平面平面,且平面平面,
∴平面
∵平面, ∴平面平面
(2)解:为 的中点,
∵平面平面,且平面平面,
∴平面.
如图,以 为原点建立空间直角坐标系,
则 ,
是 的中点,
设异面直线与所成角为 ,
则
∴异面直线与所成角的余弦值为.
(3)解:由(2)知平面的法向量为
由
得
又,
设平面 法向量为,
由可取
∵二面角为60°,,
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的一个焦点为,点在椭圆上.
(Ⅰ)求椭圆的方程与离心率;
(Ⅱ)设椭圆上不与点重合的两点, 关于原点对称,直线, 分别交轴于, 两点.求证:以为直径的圆被轴截得的弦长是定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.
(1)求证:EF∥平面PAB;
(2)若PB与平面ABCD所成角的正弦值为,求二面角P-AE-B的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+.
(1)若关于x的不等式f(3x)≤m3x+2在[-2,2]上恒成立.求实数m的取值范围;
(2)若函数g(x)=f(|2x-1|)-3t-2有四个不同的零点,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】试用恰当的方法表示下列集合.
(1)使函数有意义的x的集合;
(2)不大于12的非负偶数;
(3)满足不等式的解集;
(4)由大于10小于20的所有整数组成的集合.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了加强中学生实践、创新和团队建设能力的培养,促进教育教学改革,市教育局举办了全市中学生创新知识竞赛,某中学举行了选拔赛,共有150名学生参加,为了了解成绩情况,从中抽取50名学生的成绩(得分均为整数,满分为100分)进行统计,请你根据尚未完成的频率分布表,解答下列问题:
(1)完成频率分布表(直接写出结果);
(2)若成绩在90.5分以上的学生获一等奖,试估计全校获一等奖的人数,现在从全校所有获一等奖的同学中随机抽取2名同学代表学校参加竞赛,某班共有2名同学荣获一等奖,求该班同学恰有1人参加竞赛的概率.
分组 | 频数 | 频率 | |
第1组 | [60.5,70.5) | 0.26 | |
第2组 | [70.5,80.5) | 17 | |
第3组 | [80.5,90.5) | 18 | 0.36 |
第4组 | [90.5,100.5] | ||
合计 | 50 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).
(1)分别将A、B两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,公园内有一块边长为的正三角形空地,拟改建成花园,并在其中建一直道方便花园管理. 设分别在上,且均分三角形的面积.
(1)设(),,试将表示为的函数关系式;
(2)若是灌溉水管,为节约成本,希望其最短,的位置应在哪里?若是参观路线,希望其最长,的位置应在哪里?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com