【题目】如图,长方体的底面
是正方形,点
在棱
上,
.
(1)证明:平面
;
(2)若,求二面角
的正弦值.
【答案】(1)证明见解析(2)
【解析】
(1)根据长方体性质可知平面
,从而
,由题意
,即可由线面垂直的判定定理证明
平面
;
(2)由题意,设
,建立空间直角坐标系,即可写出各个点的坐标,求得平面
和平面
的法向量,即可由两个平面的法向量求得二面角
夹角的余弦值,再由同角三角函数关系式即可求得二面角
的正弦值.
(1)由已知得,平面
,
平面
,
故.
又,且
,
所以平面
.
(2)由(1)知.由题设知
,所以
,
故,
. 设
,以
为坐标原点,
的方向为
轴正方向,
为单位长,建立如图所示的空间直角坐标系
:
则,
,
,
,
,
,
.
设平面的法向量为
,则
即
.
所以可取.
设平面的法向量为
,则
即
所以可取.
于是.
由同角三角函数关系式可得二面角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在极坐标系中,O为极点,点在曲线
上,直线l过点
且与
垂直,垂足为P.
(1)当时,求
及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半圆的直径的两端点为
,点
在半圆
及直径
上运动,若将点
的纵坐标伸长到原来的2倍(横坐标不变)得到点
,记点
的轨迹为曲线
.
(1)求曲线的方程;
(2)若称封闭曲线上任意两点距离的最大值为该曲线的“直径”,求曲线的“直径”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
为参数且
,
,
,曲线
的参数方程为
为参数),以
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求的普通方程及
的直角坐标方程;
(2)若曲线与曲线
分别交于点
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学为了调查该校学生性别与身高的关系,对该校1000名学生按照的比例进行抽样调查,得到身高频数分布表如下:
男生身高频率分布表
男生身高 (单位:厘米) | ||||||
频数 | 7 | 10 | 19 | 18 | 4 | 2 |
女生身高频数分布表
女生身高 (单位:厘米) | ||||||
频数 | 3 | 10 | 15 | 6 | 3 | 3 |
(1)估计这1000名学生中女生的人数;
(2)估计这1000名学生中身高在的概率;
(3)在样本中,从身高在的女生中任取3名女生进行调查,设
表示所选3名学生中身高在
的人数,求
的分布列和数学期望.(身高单位:厘米)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,椭圆
:
的离心率为
,直线
与
交于
,
两点,
长度的最大值为4.
(1)求的方程;
(2)直线与
轴的交点为
,当直线
变化(
不与
轴重合)时,若
,求点
的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A为圆O上一个定点,在圆周上随机取一点B,连接AB,所得弦长AB大于圆O的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )
A.B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,已知直线l过点P(2,2).以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ﹣ρcos2θ﹣4cosθ=0.
(1)求C的直角坐标方程;
(2)若l与C交于A,B两点,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com