精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是 ,函数f'(x)的图象的一个对称中心是 ,则f(x)的最小正周期是(
A.
B.
C.π
D.2π

【答案】C
【解析】解:∵函数f(x)=asinωx+bcosωx(0<ω<5,ab≠0)的图象的一条对称轴方程是 , ∴f(0)=f( ),即b=asin(ω )+bcos(ω )=a,∴f(x)=asinωx+acosωx= asin(ωx+ ).
又函数f'′(x)= aωcos(ωx+ )的图象的一个对称中心是
aωcos(ω + )=0,∴ω + =kπ+ ,k∈Z,即ω=8k+2,
故取ω=2,则f(x)的最小正周期是 =π,
故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx,g(x)= x2﹣bx(b为常数).
(1)函数f(x)的图象在点(1,f(1))处的切线与函数g(x)的图象相切,求实数b的值;
(2)若函数h(x)=f(x)+g(x)在定义域上存在单调减区间,求实数b的取值范围;
(3)若b≥2,x1 , x2∈[1,2],且x1≠x2 , 都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个顶点为,焦点在轴上,离心率为

(1)求椭圆的方程;

(2)若椭圆与直线相交于不同的两点,当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆 + =1(a>b>0)的离心率为 ,C为椭圆上位于第一象限内的一点.

(1)若点C的坐标为(2, ),求a,b的值;
(2)设A为椭圆的左顶点,B为椭圆上一点,且 = ,求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设x,y,z均为正实数,且xyz=1,求证: + + ≥xy+yz+zx.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着生活水平和消费观念的转变,“三品一标”(无公害农产品、绿色食品、有机食品和农产品地理标志)已成为不少人的选择,为此某品牌植物油企业成立了有机食品快速检测室,假设该品牌植物油每瓶含有机物A的概率为p(0<p<1),需要通过抽取少量油样化验来确定该瓶油中是否含有有机物A,若化验结果呈阳性则含A,呈阴性则不含A.若多瓶该种植物油检验时,可逐个抽样化验,也可将若干瓶植物油的油样混在一起化验,仅当至少有一瓶油含有有机物A时混合油样呈阳性,若混合油样呈阳性,则该组植物油必须每瓶重新抽取油样并全部逐个化验.
(1)若 ,试求3瓶该植物油混合油样呈阳性的概率;
(2)现有4瓶该种植物油需要化验,有以下两种方案: 方案一:均分成两组化验;方案二:混在一起化验;请问哪种方案更适合(即化验次数的期望值更小),并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,且过点.

(1)求椭圆的方程;

(2)设为椭圆上任一点, 为其右焦点,点满足.

①证明: 为定值;

②设直线与椭圆有两个不同的交点,与轴交于点.若成等差数列,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.某公司随即抽取人对共享产品是否对日常生活有益进行了问卷调查,并对参与调查的人中的性别以及意见进行了分类,得到的数据如下表所示:

总计

认为共享产品对生活有益

认为共享产品对生活无益

总计

(1)根据表中的数据,能否在犯错误的概率不超过的前提下,认为对共享产品的态度与性别有关系?

(2)现按照分层抽样从认为共享产品增多对生活无益的人员中随机抽取人,再从人中随机抽取人赠送超市购物券作为答谢,求恰有人是女性的概率.

参与公式:

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={y|y= },B={x|y=lg(x﹣2x2)},则R(A∩B)=(
A.[0,
B.(﹣∞,0)∪[ ,+∞)
C.(0,
D.(﹣∞,0]∪[ ,+∞)

查看答案和解析>>

同步练习册答案