【题目】某高级中学今年高一年级招收“国际班”学生人,学校为这些学生开辟了直升海外一流大学的绿色通道,为了逐步提高这些学生与国际教育接轨的能力,将这人分为三个批次参加国际教育研修培训,在这三个批次的学生中男、女学生人数如下表:
第一批次 | 第二批次 | 第三批次 | |
女 | |||
男 |
已知在这名学生中随机抽取名,抽到第一批次、第二批次中女学生的概率分别是.
(1)求的值;
(2)为了检验研修的效果,现从三个批次中按分层抽样的方法抽取名同学问卷调查,则三个批次被选取的人数分别是多少?
(3)若从第(2)小问选取的学生中随机选出两名学生进行访谈,求“参加访谈的两名同学至少有一个人来自第一批次”的概率.
【答案】(1);(2);(3).
【解析】分析:(1)由题意结合所给的数据计算可得;
(2)由题意结合分层抽样比计算可得第一批次,第二批次,第三批次被抽取的人数分别为
(3)设第一批次选取的三个学生设为第二批次选取的学生为 ,第三批次选取的学生为,利用列举法可得从这名学员中随机选出两名学员的所有基本事件为个,“两名同学至少有一个来自第一批次”的事件包括共个,由古典概型计算公式可得相应的概率值为.
详解:(1)
;
(2)由题意知,第一批次,第二批次,第三批次的人数分别是
所以第一批次,第二批次,第三批次被抽取的人数分别为
(3)第一批次选取的三个学生设为第二批次选取的学生为 ,第三批次选取的学生为,则从这名学员中随机选出两名学员的所有基本事件为:
共个,
“两名同学至少有一个来自第一批次”的事件包括:
共个,
所以“两名同学至少有一个来自第一批次”的概率.
科目:高中数学 来源: 题型:
【题目】某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择;
方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率为 .第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖,规定:若抛出硬币,反面朝上,员工则获得500元奖金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,获得奖金1000元;若未中奖,则所获奖金为0元.
方案乙:员工连续三次抽奖,每次中奖率均为 ,每次中奖均可获奖金400元.
(1)求某员工选择方案甲进行抽奖所获奖金 (元)的分布列;
(2)某员工选择方案乙与选择方案甲进行抽奖,试比较哪个方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系.已知点 的极坐标为 ,直线 的极坐标方程为 ,且点 在直线 上.
(1)求 的值及直线 的直角坐标方程;
(2)圆 的极坐标方程为 ,试判断直线 与圆 的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前n项和为,且满足+n=2(n∈)
(1)证明:数列为等比数列,并求数列的通项公式;
(2)数列满足(n∈),其前n项和为,试求满足+>2018的最小正整数n.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知三棱柱的底面是正三角形,侧面为菱形,且,平面平面,分别是的中点.
(I)求证:∥平面;
(II)求证:;
(III)求BA1与平面所成角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛两次,记第一次出现的点数为 ,第二次出现的点数为 ,则事件“ ”的概率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的中心在原点,一个焦点F(﹣2,0),且长轴长与短轴长的比是 .
(1)求椭圆C的方程;
(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当 最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com