精英家教网 > 高中数学 > 题目详情

【题目】下列各图中,AB为正方体的两个顶点,MNP分别为其所在棱的中点,能得出AB//平面MNP的图形的序号是( )

A.①③B.②③C.①④D.②④

【答案】A

【解析】

运用线面平行的判定、面面平行及线面相交、面面平行的性质,并结合图形即可判断结论在各图中是否正确

①项,如图,作//,连接,得平面

平面//平面

//平面,故①项正确;

②项,如图,连结

由已知可得平面//平面

和平面相交,

不平行于平面,故②项错误;

③项,如图,连接

由已知可得//,而//,可得//

又∵//

∴平面//平面

又∵平面

//平面,故③项正确;

④项,如图,

//平面,若//平面,又

则平面//平面

而由图可知,平面不可能平行平面

不平行于平面,故④项错误.

综上,①③符合题意.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)求证: .

2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:

sin213°cos217°sin13°cos17°

sin215°cos215°sin15°cos15°

sin218°cos212°sin18°cos12°

sin2(18°)cos248°sin(18°)cos48°

sin2(25°)cos255°sin(25°)cos55°.

试从上述五个式子中选择一个,求出这个常数;

根据的计算结果,将该同学的发现推广为三角恒等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱的底面是正三角形,侧面为菱形,且,平面平面分别是的中点.

1)求证:平面

2)求证:

3)求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

的单调区间和极值;

时,若,且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆轴相切于点(0,3),圆心在经过点(2,1)与点(﹣2,﹣3)的直线上.

(1)求圆的方程;

(2)圆与圆相交于M、N两点,求两圆的公共弦MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程恰有四个不同的实数根当函数时,实数的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

)当时,判断在定义域上的单调性;

)若上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《数书九章》中对已知三角形三边长求三角形的面积的求法填补了我国传统数学的一个空白,与著名的海伦公式完全等价,由此可以看出我国古代已具有很高的数学水平,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即.已知满足 .且,则用以上给出的公式可求得的面积为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱中,底面是矩形,且,若的中点,且

)求证: 平面

)线段上是否存在一点,使得二面角的大小为?若存在,求出的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案